

वार्षिक प्रतिवेदन ANNUAL REPORT

2020-21

सीएसआईआर – केन्द्रीय नमक व समुद्री रसायन अनुसंधान संस्थान भावनगर - ३६४ ००२, गुजरात, भारत

CSIR – Central Salt & Marine Chemicals Research Institute Bhavnagar – 364 002, Gujarat, India

डाँ सुमीत जैरथ, आई.ए.एस. Dr. SUMEET JERATH, I.A.S. Secretary

भारत सरकार राजभाषा विभाग गृह मत्रालय **GOVERNMENT OF INDIA** DEPARTMENT OF OFFICIAL LANGUAGE MINISTRY OF HOME AFFAIRS

अ.शा.प.संख्या : 12011/14/2020-रा.भा.(का-2)

दिनांक : 07 सितंबर, 2020

प्रिम डा. मत्ते,

मुझे यह सूचित करते हुए अत्यंत हर्ष और गर्व हो रहा है कि आपके **बोर्ड/स्वायत्त** निकाय/ट्रस्ट/सोसाइटी को वर्ष 2019-20 के दौरान राजभाषा नीति के श्रेष्ठ कार्यान्वयन के लिए राजभाषा कीर्ति पुरस्कारों की बोर्ड/स्वायत्त निकाय/ट्रस्ट/सोसाइटी की श्रेणी के अंतर्गत 'ख' क्षेत्र में प्रथम पुरस्कार के लिए चुना गया है। कृपया अपने बोर्ड द्वारा हिंदी के प्रयोग व प्रसार की दिशा में किए गए सफल सदप्रयासों के लिए राजभाषा विभाग की हार्दिक बधाई स्वीकार करें।

कोविड-19 महामारी से उत्पन्न विकट परिस्थितियों के मद्देनजर भारत सरकार द्वारा जारी दिशा-निर्देशों के अनुसरण में इस वर्ष दिनांक 14 सितंबर, 2020 को हिंदी दिवस के अवसर पर राजभाषा पुरस्कार वितरण समारोह आयोजित नहीं करने का निर्णय लिया गया है। ये पुरस्कार अगले वर्ष हिंदी दिवस के अवसर पर दिनांक 14 सितंबर, 2021 को दिए

शुक्त काकनाका कहित, समीत

डॉ. कन्नन श्रीनिवासन निदेशक. केन्द्रीय नमक व समुद्री रसायन अनुसंधान संस्थान गिजुभाई बढेका मार्ग, भावनगर, गुजरात-364021

आवरण पृष्ठों पर प्रयुक्त तस्वीरों का विवरण Description of the Photos used on cover pages

आवरण पृष्ठ (Cover page) ऊपर से (From the top):

- 1. कैमोस्टैट मेसाइलेट, जो कि कोविड-१९ के लिए एक सक्रिय औषधीय सामग्री है, का सस्ते और स्वदेशी रूप से उपलब्ध कच्चे माल के माध्यम से संश्लेषण किया गया। Camostat Mesylate, an active pharmaceutical ingredients towards COVID 19, synthesized through inexpensive and indigenously available raw materials.
- 2. कोविड उपयुक्त व्यवहार के साथ ऑफ-लाइन कौशल विकास कार्यक्रम। Off-line skill development program following the COVID appropriate behaviour.

- 3. इंडियन रेड क्रॉस सोसाइटी भावनगर को मेम्ब्रेन आधारित फेस-मास्क प्रदान किए गए। Membrane based face-masks provided to Indian Red Cross Society Bhavnagar.
- 4. कोविंड जागरूकता अभियान में भागीदारी। Participation in COVID awareness campaign.
- 5. सीएसआईआर के कोविड 19 सेरो सर्वेक्षण में भागीदारी। Participated in CSIR's COVID 19 Sero Survey.
- 6. राज्य परिवहन अधिकारियों को हैंड सैनिटाइज़र उपलब्ध कराया गया। Hand sanitizer made available to State Transport Officials.
- 7. डीन, भावनगर चिकित्सा महाविद्यालय हल्के वजन (३० ग्राम) फेस शील्ड स्वीकार करते हुए। Dean, Bhavnagar Medical College accepting light weight (३० gm) face shield.

आवरण पृष्ठ के पीछे (Back to cover page)

- 1. सहयोगी अनुसंधान को बढ़ावा देने के लिए भा.प्रौ.सं गांधीनगर के साथ समझौता ज्ञापन पर हस्ताक्षर। Signing of MoU with IIT Gandhinagar for promotion of collaborative research.
- 2. मैसर्स एन मार्क क्रॉप साइंस, अहमदाबाद को "लिक्विड सीवीड प्लांट बायोस्टिमुलेंट्स" का तकनीकी हस्तांतरण। Know-how transfer of the "Liquid Seaweed Plant Biostimulants" to M/s N Mark Crop Science, Ahmedabad
- 3. महिला सशक्तिकरण के लिए क्रिसेंट इनोवेशन इनक्यूबेशन काउंसिल, तमिलनाडु के साथ समझौता ज्ञापन पर हस्ताक्षर। Signed MoU with Crescent Innovation Incubation Council, Tamil Nadu for women empowerment.

आंतरिक आवरण पृष्ठ (Inner cover page)

माननीय मंत्री श्री गिरिराज सिंह ने सीएसआईआर-सीएसएमसीआरआई मार्स मंडपम का दौरा किया और ऊतक संवर्धन और अंकुर उत्पादन सुविधा को देखा। Hon'ble Minister Shri Giriraj Singh visited CSIR-CSMCRI MARS Mandapam and witnessed the tissue culture and seedling production facility.

पश्च आवरण पृष्ठ (Back cover page)

कोविड-१९ पर जागरूकता बढ़ाने के लिए प्रमुख स्थानों एवं संस्थान के इलेक्ट्रॉनिक सूचना पट्ट पर होर्डिंग (गुजराती, हिंदी और अंग्रेजी में) लगाए गए; संस्थान द्वारा गढ़े और आपूर्ति किए गए सुरक्षा गैजेट पहने हुए मेडिकोज; संस्थान की कार्यशाला अनुभाग द्वारा पद संचालित सैनिटाइजर डिस्पेंसर प्रोटोटाइप; समाज में मेम्ब्रेन आधारित मास्क का वितरण। Hoardings (in Gujarati, Hindi and English) were put up at prominent places and institutions' electronic notice boards to increase awareness on COVID-19; Medicos donning protection gadgets fabricated and supplied by the institute; Foot operated sanitizer dispenser prototype by institute Workshop Section; Distribution of membrane based masks in the society.

प्रकाशन / Published by

डॉ. कन्नन श्रीनिवासन / Dr. Kannan Srinivasan निदेशक / Director, सीएसआईआर-सीएसएमसीआरआई / CSIR-CSMCRI

संकल्पना, रूप-रेखा एवं संपादन / Concept, Design and Editing

डॉ. दिवेश नारायण श्रीवास्तव / Dr. Divesh N. Srivastava अध्यक्ष, प्रकाशक दल / Chairperson, Publishinng Team

प्रकाशन दल		PUBLISHING TEAM	
डॉ. कांति भूषण पाण्डेय	सह-अध्यक्ष	Dr. Kanti Bhooshan Pandey Co-C	hairperson
श्री प्रदीप कुमार	सदस्य	Mr. Pardeep Kumar	Member
डॉ अविनाश मिश्रा	सदस्य	Dr. Avinash Mishra	Member
डॉ. रामावतार मीणा	सदस्य	Dr. Ramavatar Meena	Member
डॉ. वैभव कुलश्रेष्ठ	सदस्य	Dr. Vaibhav Kulshrestha	Member
डॉ. डी. आर. चौधरी	सदस्य	Dr. D. R. Chaudhary	Member
डॉ. मंगल सिंह राठौर	सदस्य	Dr. Mangal Singh Rathore	Member
डॉ. अंकुश वी. बिरादर	सदस्य	Dr. Ankush V. Biradar	Member
डॉ. मौतुसी मन्ना	सदस्य	Dr. Moutusi Manna	Member
डॉ. बाबूलाल रेबारी	सदस्य	Dr. Babulal Rebary	Member
डॉ. सरोज शर्मा	सदस्य	Dr. Saroj Sharma	Member
श्री भूपेंद्र कुमार मरकम	सदस्य	Mr. Bhupendra Kumar Markam	Member
डॉ. शिल्पी कुशवाहा	सदस्य	Dr. Shilpi Kushwaha	Member
डॉ. गोपाल राम भादु	सदस्य	Dr. Gopala Ram Bhadu	Member
डॉ. पारुल साहू	सदस्य	Dr. Parul Sahu	Member
श्री प्रमोद एन. मकवाना	सदस्य	Mr. Pramod N. Makwana	Member
श्री संदीपकुमार एम. वानिया	सदस्य	Mr. Sandipkumar M. Vaniya	Member
प्रशासनिक अधिकारी (या नामित)	सदस्य	Administrative officer (or Nominee)	Member
वित्त एवं लेखा अधिकारी (या नामित) सदस्य	Finance & Account Officer (or Nominee	e) Member
भंडार एवं क्रय अधिकारी (या नामित) सदस्य	Store & Purchase Officer (or Nominee)	Member

निदेशक की कलम से

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद (सीएसआईआर) की घटक प्रयोगशालाओं में से एक, सीएसआईआर-केन्द्रीय नमक व समुद्री रसायन अनुसंधान संस्थान (सीएसआईआर-सीएसएमसीआरआई), भावनगर के वार्षिक प्रतिवेदन 2020-2021 प्रस्तुत करना मेरे लिए सौभाग्य की बात है। इस अविध के दौरान संस्थान ने पूरे वर्ष कोविड-19 के कारण लगे प्रतिबंधों के बावजूद नवीन और वहनीय प्रौद्योगिकियों/ उत्पादों के विकास के माध्यम से राष्ट्र की सेवा करने के अपने प्रयासों में महत्वपूर्ण प्रगति करना जारी रखा। यह संभवतः ज्ञात हो कि सीएसआईआर-सीएसएमसीआरआई, समाज और उद्योगों की सेवा करने के प्रयासों के साथ नमक और समुद्री रसायनों, जल के विलवणीकरण व शोधन सहित मेम्ब्रेन-आधारित पृथक्करण प्रक्रियाओं, विशिष्ट अकार्बनिक रसायन, उत्प्रेरण द्वारा जैवनवीकरणीय पदार्थों सहित उत्कृष्ट व विशिष्ट रसायनों और कार्बन अधिग्रहण, उपयोग व भंडारण (सीसीयूएस),समुद्री

शैवाल और सूक्ष्म शैवाल की कृषि और मूल्य वर्धित पदार्थों के लिए उनका डाउनस्ट्रीम प्रसंस्करण, लवणसह्य पौधों की कृषि सहित जैविक और जैवप्रौद्योगिकीय विधियों के माध्यम से लवणीय भूमि का सुधार तथा स्वास्थ्य सेवा के लिए संवेदी और नैदानिक रसायनों जैसे बुनियादी और अनुप्रयुक्त विज्ञान के विभिन्न डोमेन में विविध प्रक्रियाओं/ उत्पादों/ सेवायें प्रदान करके लगातार अपनी विशेषज्ञता साबित कर रहा है।

कोविड-19 महामारी के कारण कुछ प्रतिबंधों के बावजूद, इस प्रतिवेदित वर्ष में, सीएसआईआर-सीएसएमसीआरआई ने कंपनियों/ एमएसएमई/ उद्यमियों/ स्टार्ट-अप्स को कई तकनीकों का लाइसेंस दिया, कई अंतरराष्ट्रीय और राष्ट्रीय पेटेंट प्राप्त किए, बड़ी संख्या में उच्च इम्पैक्ट फैक्टर वाले वैज्ञानिक शोधपत्र प्रकाशित किए और कई आकांक्षियों को प्रशिक्षित व कुशल किया तथा कई छात्रों एवं शोधकर्ताओं को परामर्श दिया। 2020-21 के दौरान कुल 41 पेटेंट स्वीकृत हुये, जिनमें से 19 विदेशी हैं। 20 अन्य पेटेंट आवेदन (भारत के बाहर 7) आवेदित किए गए हैं। भूरे शैवाल-सरगासम से तरल समुद्री शैवाल पादप जैव-उर्वरक (एलएसपीबी) तैयार करने की प्रक्रिया; जलीय बिह:स्राव से शुद्ध लाख रेजिन के चयनात्मक निष्कर्षण की प्रक्रिया; डेयरी और कुक्कुट पशुओं के स्वास्थ्य-सुधार और उत्पादकता वृद्धि के लिए कप्पाफाइकस अल्वारेज़ी और लाल समुद्री शैवाल आधारित संरुप; अल्जिनोफाइट्स से अल्जिनिक एसिड और इसके व्युत्पन्नों के उत्पादन के लिए एक शून्य तरल निर्वहन प्रक्रिया; और सोडियम क्लोराइड और सोडियम सल्फेट युक्त सॉल्ट रिफाइनरी/सॉल्ट वाशरी वॉश लिकर से सोडियम सल्फेट की रिकवरी की चक्रीय प्रक्रिया, सफलतापूर्वक अंतरित प्रौद्योगिकियों में शामिल हैं।

सीएसआईआर-सीएसएमसीआरआई में कार्यरत वैज्ञानिकों ने 4.5 के औसत इम्पैक्ट फैक्टर के साथ 220 शोध पत्र प्रकाशित किए और राष्ट्रीय और अंतर्राष्ट्रीय प्रकाशकों की पुस्तकों में अनेकों अध्यायों का योगदान दिया। अनेकों वैज्ञानिकों और छात्रों को प्रतिष्ठित पुरस्कार/ सदस्यता/ अध्येतावृत्ति जैसे जैवप्रौद्योगिकी उत्पाद प्रक्रिया विकास व वाणिज्यीकरण के लिए डीबीटी पुरस्कार, भारतीय राष्ट्रीय युवा अकादमी (आईएनवाईएएस) की सदस्यता, रॉयल सोसाइटी ऑफ केमिस्ट्री, यूके की फेलोशिप, प्रौद्योगिकी नवाचार के लिए 10वां राष्ट्रीय पुरस्कार, यूजीसी-डॉ. डी.एस. कोठारी पोस्टडॉक्टोरल फेलोशिप (डीएसकेपीडीएफ़), न्यूटन भाभा पीएचडी प्लेसमेंट प्रोग्राम, रिसर्च एक्सप्लोरर रुहर (आरईआर) प्रोग्राम, वाटर एडवांस्ड एंड रिसर्च इनोवेशन (डबल्यूएआरआई) फेलोशिप, मैरी-क्यूरी फेलोशिप, और डीएसटी-एसईआरबी नेहरू पोस्ट डॉक्टोरल फ़ेलोशिप और अन्य प्राप्त हुये। मैं उन्हें उनकी उपलब्धियों के लिए बधाई देना चाहता हूं।

संस्थान ने कोविड-19 संरक्षा उपयुक्त व्यवहार को अपनाते हुए कई सम्मेलनों, सेमिनारों और कार्यशालाओं की भी मेजबानी की, और राष्ट्रीय/ संगठनात्मक महत्व के दिवसों को मनाया। सीएसआईआर-सीएसएमसीआरआई ने मानव संसाधन विकास में भी महत्वपूर्ण योगदान दिया- इस वर्ष 31 छात्रों को पीएच.डी. डिग्री प्रदान की गई। इसके अलावा, विभिन्न संस्थानों और विश्वविद्यालयों के 95 छात्रों ने संस्थान

में अपना एमएससी/ एम.टेक शोध प्रबंध पूरा किया। इन गतिविधियों को वैज्ञानिक और नवीकृत अनुसंधान अकादमी (एसीएसआईआर) एवं संस्थान के मानव संसाधन प्रकोष्ठ के माध्यम से संवर्धित किया गया। सीएसआईआर एकीकृत कौशल पहल कार्यक्रम के अंतर्गत संस्थान में आयोजित विभिन्न प्रशिक्षण कार्यक्रमों के माध्यम से 250 से अधिक प्रशिक्षुओं को कुशल बनाया गया। अपनी दक्षता को अद्यतन करने के क्रम में संस्थान के वैज्ञानिकों ने समय-समय पर विभिन्न प्रशिक्षण कार्यक्रमों में भाग लिया। इस अविध में, संस्थान ने भारतीय प्रौद्योगिकी संस्थान, गांधीनगर और राष्ट्रीय समुद्र प्रौद्योगिकी संस्थान, चेन्नै जैसे संस्थानों के साथ अनुसंधान/ शिक्षण हेतु सहयोग किया। संस्थान ने महिला सशक्तिकरण के लिए क्रिसेंट इनोवेशन इनक्यूबेशन काउंसिल एवं थसीम भीवी अब्दुल कादिर कॉलेज फॉर विमेन, तिमलनाडु के साथ एक समझौता ज्ञापन पर भी हस्ताक्षर किए।

समाज सेवा के अंतर्गत, सीएसआईआर-सीएसएमसीआरआई ने पुन:प्रयोज्य पांच परत मेम्ब्रेन-आधारित मास्क का विकास और फंटलाइन कार्यकर्ताओं को उनका वितरण, स्वास्थ्य-कर्मियों के लिए एएनएसआई/आईएसईए जेड87.1-2010 अनुवर्ती फेस शील्ड, सैनिटाइज़र, पीपीई के लिए विसंक्रमण कक्ष और स्थानीय लोगों में कोविड-19 से संबंधित सामाजिक जागरूकता पैदा करने जैसे विभिन्न कार्यक्षेत्रों में कोविड-रोधी पहलों में अपनी सेवायें दीं। वैज्ञानिकों की एक टीम ने बड़े पैमाने पर स्वदेशी कच्चे पदार्थों का उपयोग करके कोविड-19 पुनर्लक्षित दवा काइमोस्टेट मेसाइलेट के लिए एक प्रक्रिया सफलतापूर्वक विकसित की। इन गतिविधियों को प्रिंट और इलेक्ट्रॉनिक मीडिया दोनों द्वारा व्यापक रूप से प्रचारित किया गया।

में, अनुसंधान व विकास के माध्यम से भारत को गौरवान्वित करने की यात्रा में संस्थान के बढ़ते प्रदर्शन के लिए सभी स्टाफ सदस्यों, सीएसआईआर-सीएसएमसीआरआई की अनुसंधान परिषद के अध्यक्ष व सदस्यों और प्रबंधन परिषद के सदस्यों तथा सभी संबद्ध हितधारकों के सहयोग और निष्ठा के प्रति आभार प्रकट करता हूँ। मैं महानिदेशक-सीएसआईआर और सीएसआईआर मुख्यालय के कर्मचारियों के प्रति भी उनके निरंतर सहयोग के लिए हार्दिक आभार व्यक्त करता हूँ। कर्मचारियों की निरंतर प्रतिबद्धता व उत्साह तथा परामर्शदाताओं के सहयोग/ मार्गदर्शन से संस्थान आने वाले वर्षों में और भी बेहतर प्रदर्शन करेगा।

अंत में, मुझे यह बताते हुए खुशी हो रही है कि सीएसआईआर-सीएसएमसीआरआई ने संस्थान में राजभाषा नीति के कार्यान्वयन में उत्कृष्ट प्रदर्शन किया और इसके परिणामस्वरूप वर्ष 2020-21 के लिए संस्थान को प्रतिष्ठित राष्ट्रीय राजभाषा 'कीर्ति पुरस्कार' से भी सम्मानित किया गया।

मुझे विश्वास है कि आप इस वार्षिक प्रतिवेदन की अन्तर्वस्तु को वैज्ञानिक अन्वेषण को प्रोत्साहित करने वाली, सहभागिता संचित करने वाली और स्थानांतरीय उपयोग का पाएंगे। मैं इस रुचिकर प्रतिवेदन को मूर्तरूप देने में शामिल सभी लोगों की सराहना करते हुये उन्हें बधाई देता हूँ। विज्ञान और प्रौद्योगिकी उद्यमों के माध्यम से राष्ट्र निर्माण में आपके विचारों/ सुझावों/ भागीदारी को सुनने में हम हर्ष का अनुभव करेगें।

(कन्नन श्रीनिवासन)

From the Director's Desk

It's my great privilege to present the Annual Report 2020-2021 of CSIR-Central Salt & Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, one of the constituent laboratories of Council of Scientific and Industrial Research (CSIR). During this period the institute continued to make significant progress in its endeavor to serve the nation through the development of novel, innovative and affordable technologies/products despite COVID-19 imposed limitations throughout the year. It is presumably known that CSIR-CSMCRI has continuously been proving its expertise by offering a variety of processes/products/services in different domains of basic and applied sciences ranging salt and marine chemicals, membranebased separation processes including water

desalination & purification, specialty inorganic chemicals, fine & specialty chemicals including biorenewables through catalysis and carbon capture, utilization, and storage (CCUS), seaweeds and microalgae cultivation and their downstream processing to value-added materials, saline land reclamation through biological and biotechnological interventions including cultivation of halotolerant plants, and sensing & diagnostic chemicals for healthcare with an endeavor to serve the society and industry.

Despite certain restrictions due to COVID-19 pandemic, in this reported year, CSIR-CSMCRI has licensed several technologies to companies/MSMEs/entrepreneurs/start-ups, has been granted many international & national patents, published a large number of high impact scientific articles, skilled and groomed many aspirants and mentored many students and researchers. During 2020-21, a total of 41 patents were granted, of which 19 are foreign. 20 other patent applications (7 outside India) have been filed. Technologies successfully transferred include: Process for preparation of Liquid Seaweed Plant Bio-stimulant (LSPB) from brown algae-Sargassum; Process of selective extraction of pure lac resin from the aqueous effluent; Kappaphycus alvarezii and Red Seaweed Based Formulations for Improving Productivity and Health of Dairy and Poultry Animals; A zero liquid discharge process for the production of alginic acid and its derivatives from alginophytes; and A cyclic process of recovery of sodium sulphate from salt refinery/salt washery wash liquor containing sodium chloride and sodium sulfate.

Scientists working at CSIR-CSMCRI published 220 research papers with an average impact factor of 4.5 and contributed to many book chapters with national and international publishers. A number of scientists and students were bestowed with recognitions like awards/memberships/fellowships such as DBT Award for Biotech Product Process Development and Commercialization, Membership of Indian National Young Academy of Sciences (INYAS), Fellowship of Royal Society of Chemistry UK, 10th National Award for Technology Innovation, UGC-Dr. D. S. Kothari Postdoctoral Fellowship (DSKPDF), Newton Bhabha PhD Placement Programme, Research Explorer Ruhr (RER) Program, Water Advanced & Research Innovation (WARI) Fellowship, Marie-Curie Fellowship, DST-SERB NPDF among many others. I wish to congratulate them for their achievements.

The institute also hosted a series of conferences, seminars and workshops, and celebrated days of national/organizational importance by adopting COVID-19 appropriate behavior. CSIR-CSMCRI contributed significantly to human resource development - during this year 31 students were awarded Ph.D. degrees. In addition, 95 students from various institutes and universities did their M.Sc./M.Tech dissertations at the Institute. These activities have been augmented through the Academy of Scientific & Innovative Research (AcSIR) and the HR Cell of the institute. Through the CSIR Integrated Skill Initiative program, over 250 people were skilled through different training programs organized in the institute. To update proficiency, scientists of the institute participated periodically in various training programs. In this period, the institute forged research/teaching collaboration with institutes like IIT, Gandhinagar, and National Institute of Ocean Technology, Chennai. The institute also signed an MoU with Crescent Innovation Incubation Council & Thassim Bheevi Abdul Khadhir College for Women, Tamil Nadu for women empowerment.

Under the domain of service to the society, CSIR-CSMCRI extended its services in anti-COVID initiatives in various verticals-right from development of reusable five layered membrane-based masks and their distribution to frontline workers, ANSI/ISEA Z87.1-2010 compliant face shields for healthcare professionals, sanitizers, disinfection chamber for PPEs and creating COVID-related social awareness amongst the local population. A team of scientists has also successfully developed a process for COVID-19 repurposed drug Camostat mesylate largely using indigenous raw materials. These activities were widely covered by both print and electronic media.

I wish to acknowledge the support and devotion of all staff members, Chairman and members of the Research & Management Councils of CSIR-CSMCRI and all associated stakeholders for the growing performance of the institute in the journey of making India proud through R&D. I also extend my sincere gratitude to DG-CSIR and staff of CSIR headquarters for their continued support. With the continued commitment and passion of the staff and with the support/guidance of mentors, the institute will do even better in the years to come.

At the end, I am delighted to share that CSIR-CSMCRI performed excellently in the implementation of Official Language Policy in the institute and as a result was conferred the prestigious National Rajbhsha 'Kirti Puraskar' award for the year 2020-21 too.

I am sure you will find the contents of the annual report stimulate the scientific quest, garner collaboration and harness translation. I congratulate and appreciate all those involved in bringing out this beautiful report which you are holding in your hands. It will also be our pleasure to hear your views/suggestions/participation in nation-building through science & technology pursuits.

(Kannan Srinivasan)

संयुक्त राष्ट्र संधारणीय विकास लक्ष्य United Nations Sustainable SDG2... भुखमरी की समाप्ति Development Goals

.....Zero Hunger

88, 89, 92, 93, 99, 101, 103, 105, 106, 125

SDG3 ... उत्तम स्वास्थ्य एवं कल्याण Good Health and Well-being 2, 5, 6,7, 49, 56, 57, 58, 59, 60, 61, 101

SDG6 ... निर्मल जल एवं स्वच्छता Clean Water and Sanitation

44, 46, 51, 52, 72, 73, 74, 75, 76, 77, 78, 112, 117, 118

SDG7... किफायती एवं स्वच्छ ऊर्जा Affordable and Clean Energy 18, 64, 65, 67, 68, 113

SDG9 ... उद्योग, नवाचार एवं बुनियादी ढांचा Industry, Innovation and Infrastructure

2, 3, 7, 8, 9, 10, 16, 17, 18, 19, 20, 24, 25, 27, 28, 30, 31, 33, 34, 35, 37, 38, 42, 84, 112, 115, 117, 118

SDU12 ... जिम्मेदार उपभोग एवं उत्पादन Responsible Consumption and Production

16, 17, 18, 19, 25, 27, 74, 75, 77, 85, 94, 95, 97, 117, 118

11, 33, 44, 46, 47, 48, 53, 75, 82, 83, 84, 85, 112, 115, 117, 118

SDG14... पानी के नीचे जीवनLife below water

46, 82, 83, 88, 89, 90, 91, 92, 93

सूची Index	001 कोविड-रोधी पहल
Indov	Anti-Luviu initiatives
IIIucx	015 उपयोगी रसायन
	Commodity Chemicals
	023 उत्कृष्ट रसायन एवं उत्प्रेरण
	Fine Chemicals and Catalysis
	041 पदार्थ विज्ञान
	Materials
77.0	055 स्वास्थ्य संरक्षण
35	
	063 கள்
10	O 71 Energy
	071 जल
	Water
	081 शैवाल प्रौद्योगिकियाँ
	Algal Tochnologies
637	087
	Agriculture
	111 पर्यावरण
	171 Environment
	121 सामाजिक दायित्व

... Social Responsibilities 135... अनुलग्नक

..... Annexture

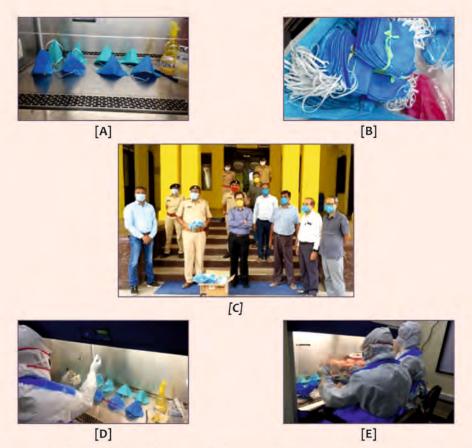
कोविड-रोधी पहल

Anti-COVID Initiatives

विश्व दिसंबर 2019 से एक अभूतपूर्व कोरोना वायरस महामारी का सामना कर कहा है और हमारा देश भी इसका अपवाद नहीं है। संकट के इस समय में सीएसआईआर विभिन्न तरीकों से देश की सेवा के लिए आगे आया है। इस दिशा में सीएसआईआर-सीएसएमसीआरआई भी पून: प्रयोज्य 5-स्तरीय मेम्ब्रेन-आधारित मास्क तैयार करने से लेकर जलीय हस्त प्रक्षालक और कीटाणुशोधन कक्षों तक - विभिन्न कार्यक्षेत्रों में योगदान देने में सक्रिय रहा है। कैमोस्टैट मेसाइलेट (जो कि कोविड-19 के उपचार के लिए एक पुनर्लक्षित एपीआई है) और इसके मध्यवर्ती घटक के संपूर्ण संश्लेषण के लिए एक लागत-प्रतिस्पर्धी विधि विकसित की गई। रेमेडिसविर जैसी एंटीवायरल दवाओं के क्रिया तंत्र को कंप्युटर सिमुलेशन तकनीकों के उपयोग द्वारा समझने का प्रयास किया गया। महामारी के पहले चरण में जब पीपीई किट की आपूर्ति कम थी, संस्थान के शोधकर्ताओं ने तीव्रता से एक प्रभावी फेस शील्ड तैयार किया और मेडिकोज को आपूर्ति की। एक प्रकार के आधारभूत आंकड़े उत्पन्न करने के प्रयास के तहत अलंग शिप-ब्रेकिंग यार्ड में कोविड-19 लॉकडाउन के दौरान -पर्यावरणीय प्रभाव का आकलन किया गया। जिओलाइट-एक्स के लिए एक प्रक्रिया के विकास के लिए अनुसंधान जारी है, जो ऑक्सीजन सांद्रक में प्रयुक्त एक अधिशोषक है। इन सब के अलावा सीएसआईआर-सीएसएमसीआरआई ने प्रमुख स्थानों पर होर्डिंग एवं पोस्टर लगाकर और प्रेस विज्ञप्ति जारी करके स्थानीय जनमानस के बीच कोविड से संबंधित सामाजिक जागरूकता पैदा करने की दिशा में बड़े पैमाने पर कार्य किया। लॉकडाउन अवधि का प्रभावी ढंग से उपयोग करने के लिए इंटरनेट पर उपलब्ध प्रख्यात वैज्ञानिकों के व्याख्यानों के आधार पर "लॉकडाउन के दौरान व्याख्यान से रहस्योद्घाटन" नामक एक व्याख्यान श्रृंखला का आयोजन किया गया। इस सारांश के साथ हम अपनी प्रमुख "कोविड-विरोधी पहल" प्रस्तुत कर रहे हैं।

The world has been witnessing an unprecedented pandemic of coronavirus since December 2019, and our country is also not an exception. In this time of crisis, CSIR came forward to serve the country in various ways. CSIR-CSMCRI has also been active in contributing in various verticals - right from the preparation of reusable 5-layered membrane-based masks to aqueous hand sanitizer and disinfection chambers. A method has been developed for the complete synthesis of Camostat Mesylate (which is a targeted repurposed API for the treatment of COVID19) and its intermediates in a cost-competitive manner. An attempt has been made to understand the mechanism of action of antiviral drugs like remdesivir using computer simulation techniques. At the earlier stage of the pandemic when the supply of PPE kits was scarce, the researchers at the Institute quickly designed and fabricated an effective face shield and supplied it to the medicos. The environmental impact at the Alang Ship-breaking yard, was assessed during the COVID-19 lockdown- with an endeavor to generate a kind of baseline data. Research is ongoing for the development of a process for zeolite-X, an adsorbent used in oxygen concentrators. Above all, CSIR-CSMCRI worked extensively towards creating COVID-related social awareness amongst the local population by installing billboards in prominent places and issuing press releases. To utilize the lockdown period effectively a lecture series entitled,

"Revelations from the Lectures during Lockdown" has been organized based on the lectures of eminent scientists available on the internet. With this summary, we are presenting our key "Anti-COVID initiatives".


SARS-CoV-2 विषाणुओं एवं वायु-जन्य जीवाणुओं के अवरोध के रूप में पुन: प्रयोज्य फेसमास्क

Reusable facemasks as barrier for SARS-CoV-2 virus and air-borne bacteria

कोविड-19 के कारण महामारी दुनिया भर में गंभीर रूप से घातक हो चुकी है और मानव जीवन के लिए एक बड़ा खतरा है। SARS-CoV-2 विषाणु संक्रमित व्यक्ति से सामान्य व्यक्ति में बूंदों (एरोसोल) के माध्यम से फैलता है। उचित अवरोध परत वाले फेसमास्क विषाणु को फैलने से रोकने में महत्वपूर्ण भूमिका निभाते हैं। इस संदर्भ में, जैसे ही भारत में महामारी की सीएसआईआर-सीएसएमसीआरआई, श्रुआत भावनगर ने SARS-CoV-2 विषाणु के साथ-साथ वायु-जन्य जीवाणुओं के लिए अवरोध के रूप में स्वदेशी फेसमास्क विकसित किया। सीएसआईआर-सीएसएमसीआरआई ने मार्च, 2020 से मास्क का उत्पादन शुरू किया। मास्क का निर्माण फैब्रिक और स्वदेशी माइक्रोफिल्ट्रेशन मेम्ब्रेन के नए परत-दर-परत संयोजन द्वारा किया गया। मास्क का महत्वपूर्ण गुण, साबुन के घोल से साधारण धुलाई या ~50°C के गर्म पानी से या 1% हाइड्रोजन परऑक्साइड घोल द्वारा पून: प्रयोज्यता हैं। मास्क को जलीय आइसोप्रोपेनॉल या इथेनॉल द्वारा भी कीटाण्रहित किया जा सकता है। फेसमास्क वाय्-जन्य जीवाणुओं और सबमाइक्रॉन कणों को कुशलता से फ़िल्टर करते हैं और कोविड-19 विषाणु के प्रवेश को पूरी तरह से प्रतिबंधित करते हैं, जैसा की आईसीएमआर-अहमदाबाद के सहयोग से परीक्षण से ज्ञात होता है। विषाणु एवं जीवाणु संक्रमण को रोकने के लिए ये मास्क लागत प्रभावी, पुन: प्रयोज्य और अत्यधिक प्रभावी हैं। श्रुआत में सीएसआईआर-सीएसएमसीआरआई, भावनगर में 40,000 से अधिक मास्क बनाए गए। पुलिस विभाग (भावनगर, अहमदाबाद और पलिताना टाउन), जिला कलेक्टर कार्यालय, भावनगर, भावनगर नगर पालिका, विभिन्न स्थानीय स्कूलों, इंडियन रेड क्रॉस सोसाइटी, सीएससी कार्यालय वडोदरा, भावनगर मेडिकल कॉलेज और भावनगर

The pandemic due to COVID-19 has caused serious fatality worldwide and is an increasing threat to human life. The SARS-CoV-2 virus spread through droplets (aerosols) from an infected person to normal person. Facemasks with proper barrier layer play an important role to prevent the spreading of the virus. In this context, as soon as the pandemic started in India, CSIR-CSMCRI, Bhavnagar, had developed indigenous facemasks as barriers for the SARS-CoV-2 virus, as well as airborne bacteria. CSIR-CSMCRI started the production of the masks in March 2020. Masks had been constructed by a novel layer-by-layer combination of fabrics and indigenous microfiltration membranes. The important attributes of the masks is reusability by simple washing with soap solution, or warm water at a temperature ~50°C or 1% hydrogen peroxide solution. The masks can also be disinfected by aqueous isopropanol or ethanol. The facemasks filter out airborne bacteria and submicron particles efficiently and restrict the permeation of the COVID-19 virus completely by ICMR-Ahmedabad collaboration. These masks are cost-effective, reusable and highly effective to prevent viral and bacterial infection. More than 40,000 masks were fabricated initially at CSIR-CSMCRI, Bhavnagar. About 25,000 masks were distributed to Police Department (Bhavnagar, Ahmedabad, and Palitana Town), District Collector Office, Bhavnagar, Bhavnagar Municipality, different local Schools, Indian Red Cross Society, CSC Office Vadodara,

चित्र: [A] बीएसएल-2 जैव सुरक्षा कैबिनेट में सामान्य रूप से मुड़ा हुआ या उल्टा मुड़ा हुआ मास्क; [B] उपयोग के लिए तैयार मास्क की तस्वीर; [C] गुजरात पुलिस को मास्क उपलब्ध कराए जा रहे हैं; [D] कोविड-19 अभेद्यता परीक्षण; [E] वायरल आरएनए निष्कर्षण के लिए वाह्य परत और चरम विपरीत परत दोनों का नमूना।

Figure: [A] Normal folded or reversed folded masks in BSL-2 biosafety cabinet; [B] Photograph of ready to use masks; [C] Masks being provided to Gujarat Police; [D] COVID-19 impermeability testing; [E] Sampling of both outer layer and extreme opposite layer for viral RNA extraction.

के स्थानीय डॉक्टरों को लगभग 25,000 मास्क वितरित किए Bhavnagar Medical College, and local doctors गए।

of Bhavnagar.

Indian Patent (application no. 202011038718; date 08/09/2020)

कोविड 19 के प्रति सक्रिय फार्मास्युटिकल अवयवों के लिए प्रक्रियाओं का विकास: कैमोस्टेट मेसाइलेट

Development of processes for active pharmaceutical ingredients towards COVID 19: Camostat Mesylate

कैमोस्टेट मेसाइलेट एक सेरीन प्रोटीएज अवरोधक के रूप में Camostat mesylate acts as a serine protease कार्य करता है, जो एंजाइम ट्रांसमेम्ब्रेन प्रोटीएज सेरीन 2

inhibitor, which is active against the enzyme

(TMPRSS 2) के प्रति सक्रिय है। यह फेफड़ों की कोशिकाओं में SARS-CoV-2 के S-संचालित प्रविष्टि को आंशिक रूप से अवरुद्ध करता है, एवं पूर्ण अवरोध तब प्राप्त हो सकता है जब कैमोस्टेट मेसाइलेट के संयोजन में अन्य औषधियों का उपयोग किया जाता है। वर्तमान में यह दवा कोविड-19 रोगियों के उपचार के लिए दसरे चरण के नैदानिक परीक्षण पर है। कैमोस्टेट मेसाइलेट के अब तक प्रतिवेदित संश्लेषण अनुकूलित मध्यवर्ती के उपयोग पर निर्भर करता है, जो आम तौर पर महंगी प्रारंभिक सामग्री को नियोजित करके तैयार किया जाता है, जिससे पूरी प्रक्रिया व्यावसायिक रूप से महंगी हो जाती है। इसके अलावा, कैमोस्टेट मेसाइलेट के संश्लेषण पर अब तक प्रतिवेदित विधियां अक्सर मामूली प्रतिफल प्रदान करती हैं और सख़्त परिस्थितयों को नियोजित करती हैं। इस संदर्भ में, हमने लागत प्रभावी और स्वदेशी कच्चे माल से कैमोस्टेट मेसाइलेट के संश्लेषण के लिए इसके प्रमुख मध्यवर्ती, अर्थात् 2-(डाइमिथाइलैमिनो)-2-ऑक्सोइथाइल 2-(4-हाइड्रॉक्सीफेनिल) एसीटेट (Int-I) और 4-

transmembrane protease serine 2 (TMPRSS2). This partially blocks SARS-CoV-2 S-driven entry into lungs cells, and full inhibition can be attained when Camostat Mesylate is used in combination with other drugs. Currently, this drug is under Phase-II clinical trial for the treatment of COVID-19 patients. The till date reported synthesis of Camostat Mesylate relies on the use of customised intermediates, which employing are generally prepared by expensive starting materials, thereby rendering the whole process commercially Furthermore, the expensive. reported methods on the synthesis of Camostat Mesylate often provide modest yield and employ drastic conditions. In this context, we have developed an alternative method for the synthesis of Camostat Mesylate through the synthesis of its key intermediates, namely 2-(Dimethylamino)-2-oxoethyl 2-(4- acetate (Int-I) and 4-Guanidinobenzoic acid hydrochloride

चित्रः कैमोस्टेट मेसाइलेट संश्लेषण का योजनाबद्ध चित्रण।

Figure: Schematic representation of Camostat mesylate synthesis.

गुआनिडीनोबेंजोइक एसिड हाइड्रोक्लोराइड (Int-II), के (Int-II), starting from inexpensive संश्लेषण के लिए एक वैकल्पिक विधि विकसित की।

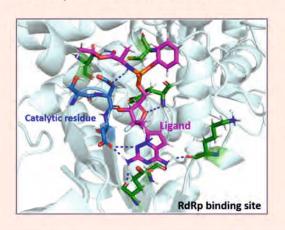
indigenously available raw materials.

Indian Patent (application no. 202011047949, dated 02.11.2020)

SARS-CoV-2 RdRp एंजाइम के लिए नए न्यूक्लियोटाइड अनुरूप की पहचान हेतु डॉकिंग और सिमुलेशन अध्ययन

Docking and simulation study to identify new nucleotide analogs for SARS-CoV-2 RdRp enzyme

इस अध्ययन में, हमने आणविक गतिकी सिमुलेशन तकनीक का उपयोग करके रेमेडिसविर और न्यूक्लियोटाइड अनुरूप


In this study, we have unravelled the inhibition of mechanism **RNA-Dependent** Polymerase (RdRp) of SARS-CoV-2

सीएसआईआर-सीएसएमसीआरआई CSIR-CSMCRI

द्वारा SARS-CoV-2 के RNA-निर्भर RNA पॉलीमरेज़ (RdRp) के निषेध तंत्र को उजागर किया है। हमने आभासी परख के द्वारा RdRp के लिए 100 न्यूक्लियोटाइड अनुरूपों की जांच की। स्क्रीन किए गए हिट्स का आगे एमडी सिमुलेशन और आण्विक यांत्रिकी पॉइसन-बोल्ट्ज़मान सतह क्षेत्र (एमएम-पीबीएसए) गणनाओं के साथ अध्ययन किया गया। स्क्रीन किए गए अनुरूप में रेमेडिसविर की तुलना में SARS-CoV-2 RdRp एंजाइम के साथ बेहतर आबद्धकर मुक्त ऊर्जा एवं पारस्परिक क्रिया प्राप्त हुई। साहित्य में, स्क्रीन किए गये अनुरूप हेपेटाइटिस सी वायरस (एचसीवी) संक्रमण के खिलाफ एक एंटीवायरल के रूप में सिक्रय बताया गया है और कोविड-19 के उपचार के रूप में आगे उपयोग के लिए उचित फार्माकोकाइनेटिक्स और विषाक्तता मापदंडों को दिखाता है।

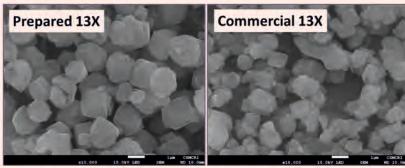
Remdesivir and nucleotide analogues using the molecular dynamics simulation technique. We have examined 100 nucleotide analogues for their binding affinity with RdRp using virtual screening. The screened hits were further studied with MD simulation and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations. The analogue has better binding free energy and interaction with the SARS-CoV-2 RdRp enzyme compared to remdesivir. In literature, the screened analogue is found to be active as an antiviral against the Hepatitis C Virus (HCV) infection and shows reasonable pharmacokinetics and toxicity parameters for further use as a treatment of COVID-19.

चित्र: स्क्रीन किए हुए लिगैंड (गुलाबी रंग की छड़ें) SARS-CoV-2 के RNA पर निर्भर RNA पोलीमरेज़ (RdRp) एंजाइम के उत्प्रेरक साइट अवशेषों (नीली स्टिक्स) के साथ मजबूत हाइड्रोजन बांड बनाती है।।

Figure: The screened ligand (Pink colour sticks) forms strong hydrogen bonds with the catalytic site residues (blue sticks) of RNA dependent RNA polymerase (RdRp) enzyme of SARS-CoV-2.

J. Phys. Chem. B, 2020, 124, 10641-10652

वायु पृथक्करण के लिए ऑक्सीजन सांद्रक श्रेणी जिओलाइट 13X का विकास Development of oxygen concentrator grade Zeolite 13X for air separation


अभूतपूर्व कोविड -19 महामारी के दौरान मेडिकल-ग्रेड ऑक्सीजन की भारी आवश्यकता है। अस्पतालों में मरीजों को मेडिकल-ग्रेड ऑक्सीजन की आपूर्ति के लिए प्रेशर-स्विंग अधिषोशण (PSA) आधारित बड़ी वायु पृथक्करण इकाइयों का उपयोग किया जाता है। इन वायु पृथक्करण उपकरणों में जिओलाइट्स का उपयोग होता हैं जो हवा से नाइट्रोजन को अधिशोषित करते हैं और निरंतर ऑक्सीजन उत्पादन में सहायक होते हैं। वर्तमान में अविश्वसनीय तरल ऑक्सीजन आपूर्ति श्रृंखलाओं पर निर्भरता को कम करने के लिए एवं मौके

There is a huge requirement for medical-grade oxygen during the unprecedented Covid-19 pandemic. Pressure-swing adsorption (PSA) based large air separation units are used for the medical-grade oxygen supply to the patients in the hospitals. These air separation equipments contain zeolites that preferentially adsorb nitrogen from the air and allow continuous oxygen generation. Large-scale PSA plants are currently being installed in large numbers at hospitals to generate oxygen at the site to

पर ही ऑक्सीजन उत्पन्न करने के लिए अस्पतालों में बड़ी संख्या में पीएसए संयंत्र स्थापित किए जा रहे हैं। ये सभी वायु पृथक्करण इकाइयाँ आयातित आक्सीजन सांद्रक (OC)-ग्रेड जिओलाइट अधिशोषको पर आधारित हैं और कुछ वर्षों के उपयोग के बाद जिओलाइट को पुनःपूर्ति की आवश्यकता होती है। OC ग्रेड जिओलाइट्स की आपूर्ति पर दुनिया भर में कुछ ही कंपनियों का दबदबा है। इसलिए, ऑक्सीजन उत्पादन संयंत्रों को मुड्डी भर निर्माताओं से जिओलाइट प्राप्त करने में कठिनाइयों का सामना करना पड़ रहा है। जिओलाइट 13X को पाउडर के रूप में तैयार किया जाता है और बाद में वायु पृथक्करण में उनके उपयोग के लिए दानेदार बनाया जाता है।

reduce dependency on unreliable liquid oxygen supply chains. All these air separation units are based on imported Oxygen Concentrator (OC)-grade zeolite adsorbents and need zeolite refilling after a few years of use. The supply of OC grade zeolites is dominated by a few companies around the world. Therefore, Oxygen generation plants are facing difficulties in procuring zeolites from this handful of manufacturers. The Zeolite 13X is prepared in powder form and later granulated for their use in air separation. We have developed an

चित्र: संक्षेषित और व्यावसायिक रूप से उपलब्ध जिओलाइट 13X पाउंडर का स्कैनिंग इलेक्ट्रॉन माइक्रोग्राफ।

Figure: Scanning Electron Micrograph of the synthesized and the commercially available zeolite 13X powder.

हमने 9±1 घन सेमी/ग्रा की नाइट्रोजन सोखने की क्षमता वाली ओसी ग्रेड जिओलाइट 13× पाउडर के उत्पादन के लिए एक स्वदेशी प्रक्रिया विकसित की है और बड़ी पीएसए वायु पृथक्करण इकाइयों के लिए एक किलोग्राम पैमाने तक संवर्धित किया है। indigenous process for the preparation of OC Grade Zeolite 13X powder with a nitrogen adsorption capacity of 9±1 cc/g and scaled up at a one Kg scale for the large PSA air separation units.

पीपीई की कमी को कम करने के लिए परिशोधन कक्ष का डिजाइन और निर्माण Design and fabrication of decontamination chamber to mitigate PPEs shortage

कोविड-19 के मौजूदा प्रकोप ने पीपीई के उत्पादन और आपूर्ति श्रृंखला में उनके अनिवार्य उपयोग और सार्वजनिक ज्ञान में वृद्धि के कारण भारी दबाव डाला है। पीपीई की विशाल खपत उनके असुरक्षित-निपटान और लैंड-फिल से जुड़ी समस्याओं को लगातार बढ़ा रहे है। सीएसआईआर-सीएसएमसीआरआई द्वारा विकसित परिशोधन कक्ष पीपीई के

The current outbreak of COVID-19 has put huge pressure on the production and supply chain of PPEs owing to their mandatory use and increased public erudition. The mammoth consumption of PPEs is ever enlarging the problem associated with their unsafe-disposal and landfill. The decontamination chamber

सीएसआईआर-सीएसएमसीआरआई CSIR-CSMCRI

निपटान में हस्तक्षेप करने और उनके पुन: उपयोग की संभावनाओं को पूरा करने में मदद कर सकता है। परिशोधन कक्ष (50"x60"x100") में विद्युत से संचालित पंप है, जो चैम्बर में हैंगर पर टांगे गए फेस मास्क की ढेरी पर जलीय हाइड्रोजन परॉक्साइड की कीटाणुनाशक धुंध बनाते है, इसके बाद वाटर-वॉश और हॉट एयर ट्रीटमेंट (60-80 डिग्री सेल्सियस) किया जाता है।

developed at CSIR-CSMCRI can help to intervene in the disposal of PPEs and entail their prospects of reuse. The decontamination chamber (50"x60"x100") has an electrically operated pump to form disinfectant mist of aqueous hydrogen peroxide on stacked face masks suspended by hangers in the chamber, followed by water-wash and hot air treatment (60-80°C). The decontamination process

चित्रः परिशोधन कक्ष की तस्वीर।

Figure: Photograph of the decontamination

chamber.

विभिन्न चरणों की श्रृंखला वाली परिशोधन प्रक्रिया जिसमें कीटाणुनाशक का छिडकाव, हीटिंग तापमान को सीएसआईआर-सीएसएमसीआरआई में बने एवं व्यावसायिक रूप से उपलब्ध फेस मास्क पर कोविड-19 और सामान्य पर्यावरणीय जीवाणु/ विषाणु लोड के प्रभावी परिशोधन के लिए अनुकूलित किया गया है। परिशोधन के बाद फेस मास्क के यांत्रिक अखंडता और कार्य प्रदर्शन जैसी महत्वपूर्ण विशेषताओं को बरकरार पाया गया। आई.सी.एम.आर.-राष्ट्रीय व्यवसायिक स्वास्थ्य संस्थान, अहमदाबाद के सहयोग से कोविड-19 वायरस से फेस मास्क के परिशोधन पर खोजपूर्ण अध्ययन सफलतापूर्वक किया गया है।

involving chain of various steps like spray of disinfectant, heating temperature, and time for disinfectant spray and heating has been optimized for effective decontamination of CSIR-CSMCRI made and commercially available face masks from COVID-19 and common environmental bacteria/virus load. The vital characteristics like mechanical integrity and function performance of face masks are retained after the treatment. The exploratory studies on decontamination of face masks from COVID-19 virus in collaboration with ICMR- National Institute of Occupational Ahmedabad Health, has been done successfully.

मेडिकोज के लिए फेस शील्ड की डिजाइन और निर्माण Design and fabrication of face shields for medicos

महामारी की शुरुआत में देश चिकित्सकों द्वारा उपयोग किए जाने वाले व्यक्तिगत सुरक्षा उपकरण (पीपीई) की अकल्पनीय कमी का सामना कर रहा था। इन परिस्थितियों में सीएसआईआर-सीएसएमसीआरआई ने भावनगर चिकित्सा At the onset of the pandemic, the country was facing an unimaginable scarcity of personal protection equipment (PPE) to be used by the medicos. In such circumstances, CSIR-CSMCRI supported Bhavnagar Medical College (BMC).

महाविद्यालय (बीएमसी) को सहयोग किया। फेस-शील्ड की तत्काल जरूरतों को पूरा करने के लिए, अप्रैल-मई 2020 के महीने में, हमने एक स्थानीय विक्रेता के सहयोग से 3डी-प्रिंटिंग तकनीक का उपयोग करके एक फेस-शील्ड को शीघ्रता से डिज़ाइन और निर्मित किया। आपातकालीन आवश्यकताओं को पुरा करने के लिए इन फेस-शील्ड के निर्माण के लिए कच्चे माल के रूप में आसानी से उपलब्ध सामग्री का उपयोग किया गया। शील्ड का फ्रेम बायोडिग्रेडेबल पॉली (लैक्टिक-एसिड) [पीएलए] का उपयोग करके बनाया गया, जो 3 डी प्रिंटिंग के लिए बहुत ही सामान्य कच्चा माल है और व्यावसायिक रूप से उपलब्ध "ओवर हेड प्रोजेक्टर" (ओएचपी) शीट का उपयोग करके फ्रंट कवर (विजर) तैयार किया गया। ओएचपी की मोटाई 100 माइक्रॉन होने के कारण उत्कृष्ट दृश्यता प्राप्त हुई। शील्ड के अनुरूप डिजाइन ने आड़ को गाल से आगे गर्दन क्षेत्र तक बढ़ा दिया। तल पर एक अतिरिक्त फ्रेम पैरामेडिक्स को थुक की सूक्ष्म बूंदों से बचाता है, खासकर जब रोगी लेटा हो और परिक्षण के दौरान खांसता या छींकता हो। पूरी शील्ड का वजन सिर्फ 30 ग्राम है, इसलिए इसे आसानी से अधिक समय तक पहना जा सकता है।। हम दो दिनों के भीतर इस तरह के फेस-शील्ड के पहले बैच की आपूर्ति करने में सक्षम थे और पीपीई किट की नियमित आपूर्ति शुरू होने तक लगभग 200 ऐसे फेस-शील्ड की आपूर्ति की।

To cater immediate needs of the face shield, in the month of April-May 2020, we quickly designed and fabricated a face shield using 3Dprinting technology with the support of a local vendor. To fulfill the emergency requirements readily available materials have been used as raw material for the fabrication of these face shields. The frame of the shield was made using biodegradable poly(lactic-acid) [PLA], which is a very common raw material for 3D printing and the front cover (Visor) has been prepared using commercially available "Over Head Projector" (OHP) sheets. The thickness of OHP was 100 microns only having excellent visibility. The tailored design of the shield extended the cover beyond the cheek to the neck region. An additional frame at the bottom protects the paramedics from the microdroplets of the spittle, particularly when the patient is lying down and coughs or sneezes during the examination. The whole shield weighs just 30 grams, therefore can be easily worn for longer durations. We were able to supply the first batch of such face-shield within two days and supplied around 200 such face-shield till regular supply of PPE kits started.

[B

चित्र: A) भावनगर मेडिकल कॉलेज (बीएमसी) के एक डॉक्टर हमारे फेस-शील्ड के साथ पीपीई सूट धारण किए हुए; B) फेस-

Figure: A) A Doctor of Bhavnagar Medical College (BMC) donning PPE suit along with our face-shield; **B)** Photograph of the face-shield.

कोविड-19 महामारी से लड़ने में मदद के लिए सीएसआईआर-सीएसएमसीआरआई की फेस शील्ड

CSIR-CSMCRI Face Shields to help fight COVID-19 Pandemic

प्रारंभिक आवश्यकताओं को सफलतापूर्वक पूरा करने के बाद, हमने एक अधिक पेशेवर फेस-शील्ड डिज़ाइन किया और "इंजेक्शन मोल्डिंग" का उपयोग करके संभावित बड़े पैमाने पर आवश्यकताओं को लक्षित किया। 110 ग्राम से कम वजन वाले फेस शील्ड को व्यापक सुरक्षा के लिए मास्क के साथ पहना जा सकता है और बिना किसी परेशानी के पहनने में

After catering to the initial requirements successfully, we designed a more professional face shield and fabricated using "injection molding" aiming at possible large-scale requirements. The face shield weighing under 110 g can be worn simultaneously with masks for broader protection and is comfortable to wear without any uneasiness. The frame of

चित्र: इंजेक्शन मोल्डिंग तकनीक द्वारा निर्मित फेस शील्ड की तस्वीर।

Figure: Photograph of the Face Shield fabricated by injection molding technique.

आरामदायक है। गैर-एलर्जी सामग्री का फ्रेम समायोज्य लोचदार हेडबैंड के साथ उपयोगकर्ता के सिर पर फिट बैठता है। 90% प्रकाश संचरणता के साथ प्रीमियम गुणवत्ता 1 मिमी मोटी ऑप्टिकल विज़र प्रज्वलन और प्रवेश के लिए प्रतिरोधी है। फेस शील्ड की असेंबली की आसानी और बदलने योग्य फ्रेम या विज़र इसे लंबे समय तक उपयोग के लिए लागत प्रभावी बनाता है। इसे व्यावसायिक रूप से उपलब्ध कीटाणुनाशकों से आसानी से कीटाणुरहित किया जा सकता है। फेस शील्ड ने ANSI/ISEA Z87.1-2015 मानक गवर्निंग डिज़ाइन, परीक्षण और कार्य आवश्यकताओं के अनुपालन के लिए प्रमाणन अर्जित किया।

non-allergic material snug fits onto the users' head with an adjustable elastic headband. The premium quality 1 mm thick optical visor with 90% light transmission is resistant to ignition and penetration. The ease of assembly of the face shield and with replaceable either frame or visor makes it cost-effective for prolonged usage. It can easily be disinfected with commercially available disinfectants. The face shield has earned certification for compliance to ANSI/ISEA Z87.1-2015 standard governing the design, testing and performance requirements.

अलंग शिप रीसाइक्लिंग यार्ड में राष्ट्रव्यापी लॉकडाउन के दौरान एक अनूठा आधारभूत आंकड़ा तैयार करना

Generating an unique baseline data during nationwide lockdown at Alang Ship Recycling Yard

महामारी अगर एक तरफ पूरी तरह निराशा, दर्द और अराजकता के साथ आई तो दूसरी तरफ इसने एक अनूठा अवसर भी प्रदान किया। तालाबंदी के दौरान, जब लगभग सभी मानवीय गतिविधियाँ रुकी हुई थीं, प्रकृति ने अपने स्थान को पुनः प्राप्त करना शुरू कर दिया था। इसने एक अद्वितीय डेटा बेस तैयार करने का एक अभूतपूर्व अवसर प्रदान किया, जिसका उपयोग भविष्य में पर्यावरण प्रभाव आकलन (ईआईए) के लिए आधारभूत रेखा के रूप में किया जा सकता है। राष्ट्रव्यापी लॉकडाउन के दौरान एक विस्तृत अध्ययन (12 मई से 16 मई, 2020) किया गया है, जिसमें अलंग, दुनिया के सबसे बडे जहाज रिसाइक्लिंग यार्ड, के आसपास परिवेशी वाय, तटीय जल, तटीय तलछट, मछली और भारी धातुओं के जैव संचय के नमूने शामिल हैं। लॉकडाउन के आंकड़ों की तुलना 2018 और 2019 में लिए गए आंकड़ों से की गई। लॉकडाउन के दौरान PM10 का मान पिछले 2 वर्षों की तुलना में क्रमशः 3.75 से 4.5 गुना कम पाया गया। इसी तरह, लॉकडाउन के दौरान PM2.5 और SPM मान में चार गुना कमी देखी गई। NO2 और O3 जैसे गैसीय प्रदूषक सुरक्षित सीमा के भीतर थे। लॉकडाउन के दौरान समग्र वायु गुणवत्ता सूचकांक (AQI) में महत्वपूर्ण सुधार हुआ। इसी तरह, तटीय जल में पोषक तत्वों के अधिकांश मापदंडों में भारी कमी देखी गयी। तटीय तलछट के नमूनों में विभिन्न भारी धातु सांद्रता भी अन्य दो नमूनों की तुलना में लॉकडाउन के दौरान भारी कमी दिखी। यह साबित करता है कि अगर मानवजनित और साथ ही औद्योगिक गतिविधियों में पर्याप्त कमी आती है तो तटीय पर्यावरण में कुशल स्व-सफाई क्षमता है। फाइटोप्लांकटन और ज़प्लांकटन की विविधता में भी वृद्धि हुई। परिणामों को सांख्यिकीय रूप से सत्यापित किया गया।

The pandemic, if on one hand came with utter disappointment, pain and chaos, it provided an unique opportunity on the other hand. During the lockdown, when almost all the anthropological activities were on halt, the nature has started reclaiming its space. This provided an unprecedented opportunity to generate a unique data base, which can be used as baseline for Environment Impact Assessment (EIA) in future. A detailed study has been carried out during nationwide lockdown (May 12 to May 16, 2020) covering sampling for ambient air, coastal water, coastal sediments, fish and bioaccumulation of heavy metals, in an around Alang, the world's biggest ship recycling yard. The lockdown data were compared with 2018 and 2019 observed data. PM10 values during lockdown were reduced by 3.75 to 4.5 times respectively as compared with the previous 2 years. Similarly, a four-fold reduction of PM2.5 and SPM values was observed during the lockdown. The gaseous pollutants like NO2 and O3 were within a safe limit. Overall air quality index (AQI) improved significantly during the lockdown. Similarly, there was a drastic reduction in the majority of the nutrient parameters in the coastal water. Different heavy metal concentrations in the coastal sediments samples also showed strong reduction during lockdown sampling in comparison with the other two samplings. This proves that the coastal environment has its efficient self-cleaning potential if there is considerable reduction in the anthropogenic as well as industrial activities. The diversity of phytoplankton zooplankton increased. The results were validated statistically.

चित्र: [A] सक्रिय वातावरण (कोविड -19 लॉकडाउन से पहले); [B] प्राचीन वातावरण (कोविड -19 लॉकडाउन से बाद)। Figure: [A] Active environment (before covid-19 lockdown); [B] Pristine environment (after covid-19 lockdown).

Environmental Science and Pollution Research. 28 (2021) 35051-35063

कोविड-19 संकट के दौरान संस्थान द्वारा तैयार किया गया अल्कोहल-मुक्त, जलीय हस्त प्रक्षालक

Alcohol-free, water-based hand sanitizer prepared by the institute during COVID-19 crisis

कोविड-19 के फैलाव को कम करने के लिए, महामारी के दौरान हाथ की स्वच्छता महत्वपूर्ण है। सीएसआईआर-केन्द्रीय नमक और समुद्री अनुसंधान संस्थान (सीएसएमसीआरआई) भावनगर के द्वारा अकार्बनिक पायसीकारी पदार्थ और सफ़ेंक्टंट के द्वारा स्थिर जैव अणु आच्छादित जलीय चाँदी नैनोकणों का उपयोग करके अल्कोहल मुक्त जलीय हस्त प्रक्षालक विकसित किया गया। इसके बाद इसे डीबीटीट्रांसलेशनल स्वास्थ्य विज्ञान एवं प्रौद्योगिकी संस्थान, फ़रीदाबाद के सहयोग से कोविड-19 और अन्य नौ विभिन्न रोगजनक जीवाणु के प्रति परीक्षण किया गया, और हाथ की सफाई के उद्देश्य के लिए कुशल एवं सुरक्षित पाया गया। प्रौद्योगिकी नीचे उल्लिखत दो एमएसएमई को हंस्तांतरित की गई और इस महामारी के दौरान कोविड-19 के प्रसार को कम करने में महत्वपूर्ण भूमिका निभाई, जिसकी देश के लिए अत्यधिक माँग थी।

उत्पाद के प्रमुख बिंदु:

• 99.9% SARS कोविड-19 के साथ अन्य विषाणु एवं जीवाणु को मारता है [Klebsiella pneumoniae (SC-1, Curtailing the spread of the COVID-19, hand hygiene is important during the Pandemic. CSIR-Central Salt and Marine Research Institute (CSMCRI) Bhavnagar has developed an alcohol-free water-based hand sanitizer using stable biomolecule capped aqueous silver nanoparticles with inorganic emulsifying agent and surfactant. It was further tested against COVID-19 and other nine different pathogenic bacteria in collaboration with DBT-Translational Health Science and Technology Institute (THSTI) Faridabad, and found to be efficient and safe for hand sanitization purpose. The technology transferred to two below mentioned MSMEs and significant role in curtailing the spread of COVID -19 during this pandemic which was the most demanding to the country.

Salient points of the product:

• Kills 99.9% SARS COVID-19 along with other virus & bacteria [Klebsiella pneumoniae (SC-1,

9023, 19114, 16280), E. coli, Pseudomonas aeruginosa, Staphylococcus aureus]

- जलीय हस्त प्रक्षालक।
- त्वचा की सतह पर पूरी तरह से अविषाक्त।
- मोइरन्चराइजर के द्वारा परिष्कृत।
- गैर ज्वलनशील और हाइड्रोजन पराक्साइड से म्क

चित्र: जलीय सिल्वर नैनो आधारित हस्त प्रक्षालक।
Figure: Aqueous silver nano based hand sanitizer.

9023, 19114, 16280), E. coli, Pseudomonas aeruginosa, Staphylococcus aureus].

- · Water based hand sanitizer.
- · Completely non-toxic to the skin layer.
- Enhanced with moisturizer.
- Non-flammable & Free from hydrogen peroxide.

Indian Patent (application no. 202011030085; date 15/07/2020)

स्थानीय स्तर पर कोविड-19 के प्रति जागरूकता पैदा करने के प्रयास Efforts to create consciousness on COVID-19 at local level

पूरा देश कोरोनावायरस की घातक चपेट में है - एक ऐसी महामारी जिसने हमारे दैनिक जीवन को उप कर दिया है। अन्य सभी जगहों की तरह गुजरात राज्य में भी इस विषाणु के फैलने की तीव्रता बढ़ती जा रही थी। संकट के उस समय में संस्थान ने हर संभव तरीके से सक्रिय रूप से योगदान देने का प्रयास किया। सामुदायिक स्तर पर, सीएसएमसीआरआई ने स्थानीय नागरिकों को कोविड 19 महामारी के बारे में सूचित करने का प्रयास किया और वायरस के प्रसार को रोकने के लिए जनता द्वारा पालन किए जाने वाले क्या करें और क्या न करें के बारे

The entire nation is in the deadly grip of coronavirus – a pandemic that has brought our daily life to a grinding halt. Like all other places, the intensity of spread of this virus was on the rise in the state of Gujarat also. The institute has tried to contribute proactively in all possible ways. At the community level, CSMCRI has made attempts to keep the local citizens informed of the COVID-19 pandemic and has placed large hoardings about the do's and don'ts that are to be adhered by the public for

चित्र: A) एलआईसी चौक, भावनगर; B) रबर फैक्ट्री, भावनगर पर स्थापित बैनर।

Figure: Hoardings installed at A) LIC Chowk, Bhavnagar; B) Rubber Factory, Bhavnagar.

सीएसआईआर-सीएसएमसीआरआई CSIR-CSMCRI

में बड़े होर्डिंग लगाए। ये 20×10 फीट आकार के होर्डिंग प्रमुख स्थानों पर लगाए गए हैं, जहां अधिक ट्रैफिका लोगों की चहलकदमी होती है, जैसे रबर फैक्ट्री; संस्कार मंडल; माधव दर्शन; एसटी स्टैंड और जसोनाथ सर्कल। संस्थान के मुख्य प्रवेश द्वार पर दो विशाल बैनर (हिंदी और गुजराती भाषा में एक-एक) लगाए गए, जिसमें कर्मचारियों/ छात्रों और जनता को कोविड-19 के प्रसार से बचने के तरीकों के बारे में बताया गया था। इन बैनरों का खाका सीएसआईआर मुख्यालय द्वारा प्रदान और परिचालित किया गया था। संस्थान में नवीनतम प्रति कोविड-19 घटनाओं पर मीडिया को अवगत कराने के लिए कई प्रेस ब्रीफिंग का आयोजन किया गया। निदेशक और वैज्ञानिकों ने आम जनता में जागरूकता पैदा करने के लिए विभिन्न मंचों पर व्याख्यान दिए।

preventing the spread of the virus. These 20×10 feet size hoardings have been put up in prominent locations, where there is high traffic/ movement of public, like the Rubber Factory; Sanskar Mandal; Madhav Darshan; ST stand and Jasonath circle. Two huge banners were installed at the main entrance gate (one each in Hindi and Gujarati language) of the institute informing the staff/ students and public at large about the methods to avoid spread of COVID-19. The template of these banners was provided and circulated by CSIR HQ. Several press briefings were organized to apprise the media on the latest anti-COVID-19 happenings in the institute. The Director and the Scientists delivered lectures on various platforms to create consciousness in common population.

Painting by...

डॉ. सोनम दुबे, सीएसआईआर आरए Dr. Sonam Dubey, CSIR RA

उपयोगी रसायन

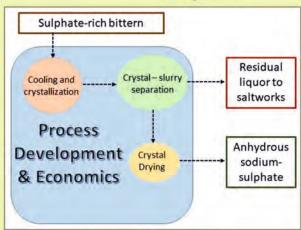
Commodity Chemicals

कमोडिटी रसायन, जिन्हें थोक रसायन भी कहा जाता है, राष्ट्रीय और वैश्विक जरूरतों को पूरा करने के लिए बड़े पैमाने पर उत्पादित किए जाते हैं। सीएसआईआर-सीएसएमसीआरआई अपने विविध और अनुप्रयुक्त अनुसंधान क्षेत्रों के बीच नमक और समुद्री रसायनों के क्षेत्र में अपनी अनुसंधान एवं विकास गतिविधियों का विस्तार करना जारी रखे हुए है। एक ठोस अनुसंधान नीव का उपयोग करते हुए, संस्थान ब्राइन और बिटर्न से सामान्य नमक उत्पादन और द्वितीयक उत्पादों (जैसे, जिप्सम, सोडियम सल्फेट, पोटाश और मैग्नीशियम रसायन) की पुनर्प्राप्ति के लिए तकनीकी समाधान प्रदान करता है। सोडियम क्लोराइड और सोडियम सल्फेट युक्त चर्मशोधन ठोस बिहःस्राव एवं अपरिष्कृत नमक से सामान्य नमक और सोडियम सल्फेट की एक साथ प्राप्ति हेतु प्रक्रियाएं भी विकसित की गई हैं। इस प्रक्रिया को राजस्थान में स्थापित भी किया गया है। राष्ट्रीय आवश्यकता को पूरा करने के लिए उच्च शुद्धता वाले सौर लवण, डबल फोर्टिफाइड नमक (डीएफएस) और पोटाश उर्वरक का उत्पादन हाल के वर्षों में संस्थान की कुछ प्रमुख गतिविधियां हैं। संस्थान को नमक अौर समुद्री रसायनों के क्षेत्र में कई राष्ट्रीय और अंतर्राष्ट्रीय पेटेंट प्राप्त हुए हैं और प्रौद्योगिकियों को विकसित और नमक उद्योगों को हस्तांतरित किया गया है।

हालिया समय में सामरिक धातुओं (उदाहरण के लिए, लीथियम) के सांद्र बिटर्न, क्षीण लीथियम-आयन बैटरी इत्यादि जैसे द्वितीयक स्रोतों से निष्कर्षण पर अनुसंधान एवं विकास पहल प्रारंभ की गई है। संस्थान नमक निर्माण प्रक्रिया की समस्याओं को सुलझाने एवं सर्वोत्तम प्रथाओं के प्रदर्शन करने के लिए सीमांत और मध्यम नमक श्रमिकों के साथ भी काम करता है।

Commodity chemicals, also called bulk chemicals, are produced on a vast scale to satisfy national and global needs. CSIR-CSMCRI continues to expand its R&D activities in the area of salt and marine chemicals among its diverse and applied research areas. Using a robust research base, the institute offers technological solutions for common salt production and secondary products (e.g., gypsum, sodium sulphate, potash and magnesium chemicals) recovery from brines and bitterns. Processes for simultaneous recovery of common salt and sodium sulphate from crude salts and tannery solid effluents containing sodium chloride and sodium sulphate have also been developed. The process has also been deployed in Rajasthan. Production of high purity solar salts, Double Fortified Salt (DFS) and potassic fertilizer to meet the national need are some of the hot activities of the institute in recent years. Several national and international patents have been granted to the institute in the area of salt and marine chemicals and technologies have been developed and transferred to salt industries.

R&D initiatives on strategic metals (for example, lithium) extraction from secondary sources like concentrated bittern, exhausted lithium-ion batteries, etc., have been taken



in recent times. The institute also works with marginal and medium salt workers for problem solving and demonstrating the best practices of the salt manufacturing process.

सल्फेट-युक्त बिटर्न से सोडियम सल्फेट का उत्पादन Sodium sulphate production from sulphate-rich bittern

राजस्थान (भारत) में स्थित नमक-उत्पादक प्रतिवर्ष तीस लाख टन से ज्यादा सल्फेट-युक्त बिटर्न उत्पन्न करते हैं, जिसका उचित उपचार आवश्यक है। ऐसे अनुपयोगी सह-उत्पादों से उपयोगी संसाधन की पुनर्प्राप्ति एक धारणीय अपशिष्ट प्रबंधन विकल्प प्रस्तुत करता है। सल्फेट-युक्त बिटर्न से सोडियम सल्फेट (Na,SO4) उत्पादन के लिए शीतलन क्रिस्टलीकरण, निस्पंदन एवं शुष्कन के संयोजन से एक एकीकृत प्रक्रिया विकसित एवं मूल्यांकित की गयी। प्रक्रिया रचना गणना दर्शाती है कि एक टन निर्जल Na2SO4 (~ 97 wt% शुद्धता) का उत्पादन 6.31 टन बिटर्न से किया जा सकता है जिसमें लगभग 141 g/L सल्फेट आयन सांद्रता थी। 5 टन प्रति दिन निर्जल Na2SO4 क्षमता वाले संयंत्र का "लागत और लाभप्रदता विश्लेषण" मूल्यवर्धन और अपशिष्ट प्रबंधन की दिशा में बिटर्न से सोडियम-सल्फेट उत्पादन की तकनीकी-आर्थिक व्यवहार्यता को मजबूती से स्थापित करता है।

Sulphate-rich bittern generated at saltworks in the Rajasthan (India) exceeds 3 million tons annually and requires adequate treatment. Resource recovery from such unutilized byproducts presents a sustainable waste management approach. A process for sodiumsulphate (Na₂SO₄) recovery from sulphate-rich bitterns using an integrated process combining cooling crystallization, filtration and drying as major unit operations has been developed and evaluated. The process design calculations have shown that one ton of anhydrous Na₂SO₄ (~97 wt% purity) can be produced from 6.31 tons of bittern having a sulphate ion concentration of about 141 g/L. A "cost and profitability analysis" of a 5 ton per day anhydrous Na₂SO₄ capacity plant firmly establish the techno-economic feasibility of sodium-sulphate production from towards value addition and waste management.

चित्र: सल्फेट-युक्त बिटर्न से सोडियम सल्फेट के उत्पादन की एकीकृत प्रक्रिया।

Figure: Integrated process for sodium-sulphate production from sulphate-rich bittern.

Journal of Environmental Chemical Engineering, 9 (2021) 105632

सोडियम-क्लोराइड एवं सोडियम-सल्फेट युक्त क्रूड से उच्च शुद्धता वाले नमक प्राप्ति की प्रक्रिया

Process for the recovery of high purity salt from crudes containing sodium chloride and sodium sulphate

चमड़ा उद्योग से निकलने वाले अपशिष्ट में खनिज नमक (मुख्यतः सोडियम-क्लोराइड व सोडियम-सल्फेट) से युक्त ठोस अवशेष प्राप्त होते हैं। इसी प्रकार राजस्थान क्षेत्र में उत्पादित सौर नमक में सोडियम-सल्फेट की अधिक मात्रा पायी जाती है जिससे प्राप्त नमक खाद्य या औद्योगिक उद्देश्यों की लिए उपयुक्त नहीं होता है। इस संदर्भ में, उच्च शुद्धता वाले नमक (NaCI) एवं सोडियम-सल्फेट (Na2SO4.10H2O) को क्रूड, जैसे कि चमड़े के कारखाने के अपशिष्ट और राजस्थान झीलों से उत्पादित नमक, से प्राप्त करने के लिए एक प्रक्रिया विकसित एवं प्रदर्शित की गई। तकनीकी को हस्तानांतरित

Tannery wastes processing results in solid residue (salt mixture) rich in mineral salts (primarily sodium chloride and sodium sulphate). In similar lines the solar salt produced in Rajasthan region is contaminated with sodium sulphate and thus is not suitable for edible or industrial purposes. In this context, a process to recover high purity salt (NaCl) and sodium sulphate (Na₂SO₄.10H₂O) from crudes such as solid waste from tannery effluents and common salt produced from Rajasthan Lakes (India) containing sodium sulphate was developed and demonstrated.

चित्रः राजस्थान के डीडवाना क्षेत्र में साल्ट वाशरी सोडियम सल्फेट प्लांट की स्थापना - और प्रदर्शन।

Figure: Installation of salt washery and sodium-sulphate plant at Didwana, Rajasthan and demonstration

कर दिया गया है। डीडवाना (राजस्थान) में एक संयंत्र स्थापित किया गया है। तमिलनाडु के सार्वजनिक चमड़ा उद्योग अपशिष्ट उपचार संयंत्र में प्लांट लगाने की प्रक्रिया चल रही है।

The technology has been transferred. One plant has been installed at Didwana (Rajasthan). Installation of plant is in process at Common Effluent Treatment Plants of Tamil Nadu.

Indian Patent No. 232395; application number 202011009669 dated March 6, 2020

क्लांत लीथियम-आयन बैटरी से महत्वपूर्ण धातुओं का निष्कर्षण Extraction of critical metals from exhausted lithium-ion batteries

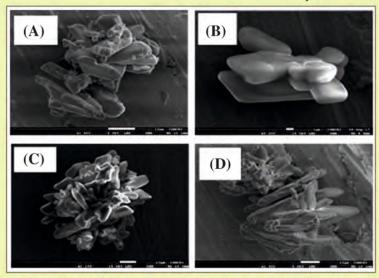
लीथियम एक सामरिक धातु है और इसके खनिज संसाधन भारत में पर्याप्त मात्रा में नहीं हैं। इसलिए, वैकल्पिक संसाधनों में, भारत में विशाल उपभोक्ता बाज़ार को देखते हुये लीथियम, लीथियम-आयन बैटरी (एलआईबी) के रूप में प्रचुर मात्रा में उपलब्ध है। लीथियम-आयन बैटरी की उपयोग उम्र 3-5 वर्ष या औसत जीवन 1000 चक्र का होता है, इसलिये उपयोग चक्र समाप्त होने के बाद क्लांत लीथियम-आयन बैटरी बहुतायत में मिलती हैं। धारणीय पुनर्चक्रण प्रक्रियायों के अभाव में, क्लांत बैटरी का प्रारब्ध लैंडफिलिंग, स्थिरीकरण या भरमीकरण होते हैं। उच्च धातु-मात्रा के रहते क्लांत बैटरियों का निस्तराण न तो पारिस्थितिक रूप से और ना ही आर्थिक रूप से व्यवहार्य है। इस संदर्भ में, हमने क्लांत एलआईबी के कैथोड से कोबाल्ट, निकल, मैंगनीज और लीथियम के निष्कर्षण के लिए एक हाइड्रोमेटलर्जिकल प्रक्रिया विकसित की है। विशेष रूप से (a) क्लांत बैटरी के कैथोड भाग से एल्यूमीनियम पन्नी को अलग करने के पूर्व-उपचार किए बिना बहुमूल्य धातुओं के निष्कर्षण के लिए उपयोग किया गया, (b) एल्युमीनियम पन्नी मृक्त कैथोड-सक्रिय चूर्ण का भी बहुमूल्य धातुओं के निष्कर्षण के लिये उपयोग किया गया। इस प्रक्रिया में सामान्य तापमान पर बहुमूल्य धातुओं की लीचिंग के लिए एसिटिक अम्ल को एक निस्सारक-सह-कार्बनिक विलायक और H2O2 को अपचयन कारक के रूप में उपयोग किया गया। 50 ग्राम कैथोड-सक्रिय चूर्ण के लिए प्रयोग के अनुकूलन के बाद एक किलो बैच के लिए स्केल-अप किया गया। कैथोड लीचिंग के बाद, शेष द्रव का उपयोग अन्य धातुओं के क्रमिक पृथक्करण के लिए किया गया, जहाँ कोबाल्ट को कोबाल्ट सल्फाइड, निकल को निकल-(DMG) युग्म, मैंगनीज को मेंगनीज हाइड्रोक्साइड और लीथियम को लीथियम कार्बोनेट या लीथियम फॉस्फेट के रूप में अलग किया गया। शून्य निर्वहन प्रक्रिया स्थापित करने के लिये, अंत में उप-उत्पाद सोडियम एसीटेट को शुद्ध रूप में अलग कर लिया गया।

Lithium is a strategic metal and its mineral resources are not adequate in India. Therefore, among alternative resources, lithium in the form of lithium-ion batteries (LIBs) are abundant considering the huge consumer market in India. The service life of lithium-ion battery is generally 3 - 5 years or average life is of 1000 cycles, that's why exhausted lithiumion batteries are plentiful after the end of the usage cycle. In absence of sustainable recycling routes, the fate of the spent batteries is landfilling, stabilization or incineration. Disposal of used batteries is neither ecologically nor economically viable due to their high metal content. Therefore, we developed a hydrometallurgical process for the recovery of cobalt, nickel, manganese and lithium from cathode in spent LIBs. Specifically, (a) cathode part of the spent batteries is used without pre-treatment for separation of aluminum foil to recover valuable metals from cathode, (b) Cathode-active powder, which was free of aluminum foil was also used for the recovery of valuable metals. Acetic acid as a lixiviant-cum-organic solvent and H2O2 as a reducing agent are used for the leaching of valuable metals in this process at room temperature. After optimization of the experiments using 50g cathode active powder it was scale-up to one Kg batch. After the leaching of cathode, the leached liquor was used for sequential separation of metal ions, where cobalt was separated as cobalt sulfide, nickel as nickel-(DMG) complex, manganese as manganese hydroxide and lithium as lithium carbonate or lithium phosphate. Finally, the byproduct sodium acetate was separated in pure form to establish a zero discharge process.

चित्र: क्लांत एलआईबी से धातुओं का क्रमिक निष्कर्षण की चित्रीय प्रस्तुति; इच्छुक उद्योग भागीदार (इलेकोरेव एनेर्जी प्राइवेट लिमिटेड) की टीमें।

Figure: Pictorial presentation of sequential precipitation of metals from exhausted LIBs; Teams of Interested Industry partners (Elecorev energy pvt. Ltd. & E-frontline recycling Pvt. Ltd.).

खारा अपशिष्ट प्रबंधन: औद्योगिक अपशिष्ट एवं बिटर्न से लवण की प्राप्ति Saline waste management: Recovery of salts from industrial wastes and bittern


तांबा-अमोनियम कॉम्प्लेक्स युक्त औद्योगिक बिह:स्त्राव से तांबा एवं अमोनियम लवण को निष्कर्षित किया गया। कॉपर को कॉपर सल्फाइड तथा कॉपर हाइड्रोक्साइड के रूप में अलग किया गया है। उर्वरक मैग्नीशियम- अमोनियम-फॉस्फेट (MAP, Mg.NH4PO4.6H2O) जिसे आमतौर पर स्टुवाइट के नाम से जाना जाता है, का उत्पादन विभिन्न स्त्रोतों के अपशिष्टों को मिलाकर किया गया है। अमोनियम कार्बोनेट और पॉली-फोस्फोरिक अम्ल में समृद्ध वर्णक-उत्पादन उद्योग के अपशिष्ट को क्रमशः नाइट्रोजन (N) एवं फॉस्फोरस (P) के स्त्रोत के रूप में प्रयोग किया गया, जब कि समुद्री-बिटर्न का

Recovery of copper and ammonium salts from industrial effluent containing copper ammonium complex has been carried out. Copper has been separated in the form of copper sulfide and copper hydroxide. The production of fertilizer magnesium ammonium phosphate (MAP, Mg.NH₄PO₄.6H₂O) commonly known as struvite, has been carried out by mixing waste effluents of different sources. Effluents form pigment production industry rich in ammonium carbonate and poly phosphoric acid have been used as source of nitrogen (N) and phosphorus (P) respectively,

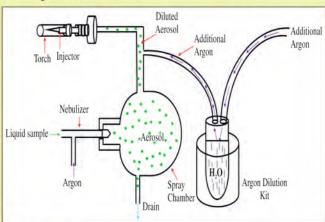
उपयोग मैग्नीशियम (Mg) के स्त्रोत के रूप में किया गया। इस पद्धित को अपनाने से न केवल अपशिष्ट प्रबंधन में मदद मिलेगी बल्कि आर्थिक लाभ के साथ जल निकायों में P a N के निर्वहन के पर्यावरणीय खतरों को नियंत्रित भी किया जा सकेगा। यह प्रक्रिया विशेष कर सौर नमक करखाने, जो P a N युक्त अपशिष्ट उद्योगों के निकट स्थित हैं, के लिए उपयोगी होगी। स्टुवाइट के अवक्षेपण के बाद, बचे हुए द्रव को नमक की वर्धित प्राप्ति के लिए नमक संकर्म में पुनर्चक्रित किया जा सकता है।

whereas sea bittern has been used as source of Mg. The adoption of the method will not only help in waste management but also in controlling environment hazards of P and N discharge in water bodies with economic benefits. The method is particularly useful for solar works which are in vicinity of industries releasing P and N containing effluents. After precipitation of struvite, the left out liquor can be further recycled into the salt works for enhanced recovery of common salt.

चित्र: Mg²⁺:NH₄⁺:PO₄³⁻ स्टाइकियोमीट्रिक अनुपात में निष्कर्षित MAP की SEM छवियां (A) 1:0.5:1 (बिना धुला हुआ नमूना), (B) 1:0.5:1 (धोया गया नमूना), (C) 1:1:1(बिना धुला नमूना), और (डी) 1:1:1।

Figure: SEM images of MAP precipitated in stoichiometric proportions of $Mg^{2+}:NH_4^+:PO_4^{3-}$ (A) 1:0.5:1 (unwashed sample), (B) 1:0.5:1 (washed sample), (C) 1:1:1(unwashed sample), and (D) 1:1:1.

Environmental Science and Pollution Research (2020) 27:7720-7728


कास्टिक पोटाश में सूक्ष्म तत्व अशुद्धियों के निर्धारण के लिए ICP-MS विश्लेषण पद्धति का विकास और सत्यापन

ICP-MS method development and validation for determination of trace elemental impurities in caustic potash

कास्टिक पोटाश में सूक्ष्म तत्व अशुद्धियों के निर्धारण हेतु ICP-MS विश्लेषण पद्धित का विकास और सत्यापन किया गया। उपयुक्त प्रणाली विन्यास का उपयोग एवं परिचालन मापदंडों का अनुकूलन किया गया। इस विधि में आर्गन गैस

ICP-MS method is developed and validated for quantification of trace elemental impurities in caustic potash. Employment of suitable system configuration and optimization of operational parameters was done. Argon Gas Dilution तनुकरण (AGD) किट का उपयोग किया गया तथा इस विधि को नियोजित करके विश्लेषण किए गए धातु आयनों में 208Pb, ¹¹¹Cd, ¹⁰⁷Ag, ⁸⁸Sr, ⁶⁴Zn, ⁶³Cu, ⁵⁹Co, ⁵⁸Ni, ⁵⁷Fe, ⁵⁵Mn और ⁵²Cr शामिल हैं। सामान्य/ नियमित विन्यास (एजीडी किट के बिना) के तहत, ICP-MS उपकरण 0.2% तक घुले हुए ठोस नमूनो का विश्लेषण कर सकता है और इसमें हम तत्वो का सूक्ष्म विश्लेषण नहीं कर पाते है। उपरोक्त कार्य में, AGD किट का उपयोग करके उच्च शुद्धता ग्रेड के HNO3 द्वारा 1% KOH के द्वारा उदासीनीकरण के बाद घुले हुए ठोस नमूनो का विश्लेषण कर सकते है। यह उच्च घुलित ठोस और उच्च क्षारीयता वाले नमूनो का विश्लेषण कर सकता है। आंतरिक मानकों (Sc, Y, Gd) के साथ वाह्य अंशांकन KNO3 के मैट्रिक्स के साथ किया जाता है क्योंकि HNO3 द्वारा KOH के उदासिनीकरण के बाद KNO3 बनता हैं। विधि विकास से संबंधित प्रमुख विशेषताओं जैसे मैट्रिक्स-मिलान, परिशुद्धता और यथार्थता का विस्तृत अध्ययन किया गया।

(AGD) kit was employed in this method and metal ions analyzed by employing this method include 208Pb, 111Cd, 107Ag, 88Sr, 64Zn, 63Cu, 59Co, 58Ni, 57Fe, 55Mn and 52Cr. Under normal/routine configuration (without AGD kit), ICP-MS instrument can handle solution having dissolved solids up to 0.2% and is susceptible to compromise with low detection limits. In the above work, using AGD kit, one can analyze the dissolved solid samples by high purity grade HNO₃ after neutralization with 1% KOH. It addresses issues of high dissolved solids and high alkalinity. External calibration with internal standards (Sc, Y, Gd) is performed with the matrix of KNO3 since neutralization of KOH by HNO₃ forms KNO₃. A detailed study of the key features related to the method development such as matrix-matching, accuracy and precision was done.

चित्रः आर्गन गैस तनुकरण (एजीडी) तंत्र के लिए योजनाबद्ध आरेख।

Figure: Schematic diagram for Argon Gas Dilution (AGD) set up.

International Journal of Mass Spectrometry, 454 (2020), 116356

Painting by...

सुश्री सुषमा रानी तिर्की, एसीएसआईआर पीएचडी छात्र Ms. Sushma Rani Tirkey, Acsir PhD Student

उत्कृष्ट रसायन एवं उत्सेरण

Fine Chemicals and Catalysis

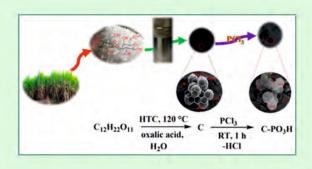
भारतीय रसायन उद्योग अत्यधिक तीव्र गित से बढ़ रहा है। भारत वैश्विक स्तर पर रसायनों के निर्यात और आयात में एक मजबूत स्थिति रखता है और वैश्विक स्तर पर निर्यात में 14वें और आयात में 8वें स्थान पर है। भारतीय रसायन उद्योग 2019 में 178 बिलियन अमेरिकी डॉलर का था और 2025 तक 9.3% सीएजीआर दर्ज करते हुए 304 बिलियन अमेरिकी डॉलर तक पहुंचने की उम्मीद है। 2025 तक रसायनों की मांग में 9% प्रति वर्ष की वृद्धि होने की उम्मीद है। विशिष्टता रसायन भारत में सम्पूर्ण रसायन और पेट्रोरसायन बाजार का 22% हिस्सा हैं।

सीएसआईआर-सीएसएमसीआरआई लंबे समय से "उत्कृष्ट रसायन एवं उत्प्रेरण" के केंद्रीय विषय पर आधारित विविध और अत्यधिक अनुप्रयुक्त अनुसंधान क्षेत्रों में काम कर रहा है। इस संस्थान के वैज्ञानिक विभिन्न उत्प्रेरक परिवर्तनों, जिनका सूक्ष्म रसायनों में सशक्त उपयोग है, पर अंतर्दृष्टि प्राप्त करने में व्यापक रूप में संलग्न हैं। अनुसंधान का प्राथमिक फोकस हाइड्रोफॉर्माइलेशन, चयनात्मक ऑक्सीकरण, सुगंध रसायन, डाई क्षरण, अधिशोषण, विषमचक्रीय यौगिकों का संश्लेषण/ प्रकार्यात्मकरण, अक्रिय C-H/C-O आबंध प्रकार्यात्मकरण अभिक्रियाएं, और असमित परिवर्तन पर जोर के साथ विभिन्न समांगी और विषमांगी उत्प्रेरण प्रणालियों के लिए उत्प्रेरक या प्रक्रिया विकसित करना है। इसके अलावा, बायोमास-व्युत्पन्न रसायनों से मूल्यवर्धन विकसित करना हमारे कुछ प्रमुख प्रवर्तमान शोध प्रयास हैं। संस्थान का आउटपुट प्रौद्योगिकी/ प्रक्रिया/ उत्पाद विकास, अंतरराष्ट्रीय स्तर पर प्रतिष्ठित पत्रिकाओं में गुणवत्ता प्रकाशनों और विभिन्न सामाजिक गतिविधियों द्वारा भली प्रकार से संतुलित है। बौद्धिक संपदा अधिकार उनमें से कुछ प्रक्रियाओं की रक्षा करते हैं, और कुछ को विभिन्न उद्योगों/ लाइसेंसधारियों को स्थानांतरित किया है। विशेष रूप से, उनमें से कुछ उत्प्रेरक/ उत्प्रेरक प्रक्रियाओं का व्यावसायिक रूप से दोहन किया जा रहा है। इस संक्षिप्त अवलोकन के साथ, हमें 2020-21 के दौरान किए गए हमारे कुछ उल्लेखनीय कार्यों को प्रस्तुत करते हुए खुशी हो रही है।

The Indian chemical industry is hugely growing fast. India holds a strong position in exports and imports of chemicals globally and ranks 14th in exports and 8th in imports globally. The Indian chemicals industry stood at US\$ 178 billion in 2019 and is expected to reach US\$ 304 billion by 2025, registering a CAGR of 9.3%. The demand for chemicals is expected to expand by 9% per annum by 2025. The specialty chemicals constitute 22% of the total chemicals and petrochemicals market in India.

CSIR-CSMCRI has been working in diverse and highly applied research areas based on the central theme of "Fine Chemicals and Catalysis" for a long time. The scientists from this institute are engaged immensely in gaining insight into various catalytic transformations that find potential applications in fine chemicals. The primary focus of the research is to develop a catalyst or process based on various homogeneous and heterogeneous catalyst systems with an emphasis on hydroformylation, selective oxidation, perfumery chemicals, dye degradation, adsorption, synthesis/functionalization of heterocyclic compounds, inert C–H/C–O bond functionalization reactions, and

asymmetric transformations. Also, developing a value-addition from biomass-derived chemicals are some of our major ongoing research endeavors. The institute's output is well balanced by technology/process/product developments, quality publications in internationally reputed journals, and various societal activities. IP rights protect some of those processes, and a few are transferred to various industries/licensees. Notably, a few of those catalysts/catalytic processes are being exploited commercially. With this concise overview, we are delighted to present some of our noteworthy works conducted during 2020–21.


सुगंध रसायनों के संक्षेषण के लिए सतत और हरित प्रक्रिया Sustainable and greener process for synthesis of perfumery chemicals


अम्लीय-प्रकार्यात्मकृत अभिक्रिया द्वारा α-पेनिन ऑक्साइड के आइसोमेराइजेशन के द्वारा विभिन्न मूल्य वर्धित उत्पादों का संक्षेषण किया जा सकता है, जैसे कार्वोल (CV), कैम्फोलेनिक एल्डिहाइड (CA), p-सायमीन (CY), ट्रांस-पिनोकार्वेओल (TPC), पिनोल (p), ट्रांस-पिनोकारवोन (TPCV), ट्रांस-सोब्रेरोल (TSB) आदि। हम इस निष्कर्ष पर पहुंचे कि खोई से प्राप्त सल्फोनिक अम्लीय और फॉस्फोनेट प्रकार्यात्मकृत उत्प्रेरक एक कुशल धातु रहित ठोस अम्ल उत्प्रेरक है। पूर्व में रिपोर्ट किए गये Zn आधारित विषमांग उत्प्रेरक ने अनुकूलित परिस्थितियों में CV के लिए 75% रूपांतरण और 80% चयनात्मकता दी।

यहां, हम सल्फोनिक एसिड और फॉस्फोनेट प्रकार्यात्मक ब्रोंस्टेड ठोस अम्लीय उत्प्रेरक के संश्लेषण के लिए सतत और हिरत मार्ग रिपोर्ट कर रहे हैं। अम्लता कार्बन का उत्पादन करने के लिए खोई के हाइड्रोथर्मल कार्बोनाइजेशन, उसके बाद H_2SO_4 और PCI_3 उपचार प्रकार्यात्मकरण को सुगम बनाता है। $-SO_3H$ और $-PO_3H$ की उपस्थिति की पृष्टि NMR, CP-MAS, FT-IR, 31P NMR, XPS और SEM-EDAX विश्लेषण द्वारा की गई। $-SO_3H$ और $-PO_3H$ प्रकार्यात्मकृत कार्बन α -पेनिन ऑक्साइड के दो-चरण आइसोमेराइजेशन के लिए पर्यावरण की दृष्टि से सौम्य धातु रहित ठोस अम्ल उत्प्रेरक है। यह पाया गया कि 80-160°C पर, उत्प्रेरक DMF में 85% चयनात्मकता के साथ CV के लिए α -पेनिन ऑक्साइड के संश्लेषण में सहायता प्रदान

The isomerization of α -pinene oxide by acidic-functionalised reaction may lead to the formation of various value-added products, like Carveol (CV), Campholenic aldehyde (CA), p-cymene (CY), trans-pinocarveol (TPC), pinol (p), trans-pinocarvone (TPCV), trans-sobrerol (TSB) etc. We concluded that sulphonic acidic and phosphonate functionalized catalyst derived from bagasse is an efficient, environmentally benign metal-free solid acid catalyst. Previous reported Zn based heterogeneous catalyst gave 75% conversion and 80% selectivity to CV with under the optimized conditions.

Herein, we report sustainable and greener route for the synthesis of sulphonic acid and phosphonate functionalized Brønsted solid catalyst. The acidity facilitates hydrothermal carbonization of bagasse to produce carbon followed by H2SO4 and PCl3 treatment to form functionalization. The presence of -SO₃H and -PO₃H was confirmed by NMR, CP-MAS, FT-IR, 31P NMR, XPS, and SEM-EDAX analysis. The -SO₃H and -PO₃H functionalized carbon is environmentally benign metal-free solid acid catalyst for twophase isomerization of α-pinene oxide. It was found that at 80-160°C, the catalyst favours the synthesis of α -pinene oxide to CV with

चित्र: -SO3H & -PO3H बायोमास से प्रकार्यत्मकृत उत्प्रेरक संश्लेषणा

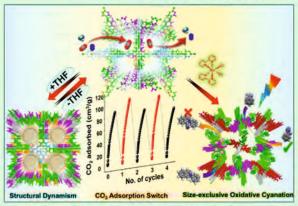
Figure: -SO₃H & -PO₃H Functionalised catalyst synthesis from biomass.

करता है। वांछित उत्पाद CV के लिए रासायनिक चयनात्मकता विलायक के उपयुक्त चुनाव के माध्यम से प्राप्त की जा सकती है। अध्ययनों से यह पाया गया कि ध्रुवीय एप्रोटिक विलायक CV और गैर-ध्रुवीय CA के संक्षेषण में सहयोग करते हैं। α -पेनिन ऑक्साइड के समावयवीकरण में कार्बन पर प्रकार्यात्मकरण के प्रभाव का अध्ययन करने के लिए -SO₃H और -PO₃H प्रकार्यात्मकृत कार्बन उत्प्रेरक का तुलनात्मक अध्ययन किया गया। इसके अलावा, उत्प्रेरक को गतिविधि और चयनात्मकता में किसी भी महत्वपूर्ण नुकसान के बिना सफलतापूर्वक पूर्नचक्रित किया गया।

85% selectivity in DMF. Chemoselectivity to desired product CV can be achieved through the appropriate choice of the solvent. Form the studies it was found that polar aprotic solvents favours CV and non-polar favours to CA. Comparative study of carbon $-SO_3H$ and $-PO_3H$ functionalized carbon catalysts were performed to study the influence of functionalization on carbon in the isomerisation of α -pinene oxide. Moreover, the catalyst was successfully recycled without any significant loss of activity and selectivity.

Dalton Transactions, 49 (2020) 7210-7217. Applied Catalysis B: Environmental, 268 (2020) 118456-118479.

संरचनात्मक-गतिशीलता-चलित CO₂ अधिशोषण कुंजी एवं पोस्ट-धातुकरण-प्रेरित आकार-चयनात्मक डायमंडॉइड COF में Cα−H फोटोसायनेशन Structural-dynamism-actuated CO₂ adsorption switch and post-metalationinduced size-selective Cα−H photocyanation in diamondoid COF


सहसंयोजी कार्बनिक ढांचे (सीओएफ) क्रिस्टलीय रंधित सामग्री के तेजी से बढ़ते वर्ग हैं, और अपनी विशाल संरचनात्मक विविधता, और ट्यून करने योग्य छिद्र आकारिकी के कारण बहुत ध्यान आकर्षित किया है। विशेष रूप से, ऐसे अनुप्रयोग जो पर्यावरणीय मुद्दों को सुलझाने का लक्ष्य रखते हैं, उनके कार्य-विशिष्ट छिद्र संरचना मॉडुलन के कारण लोकप्रिय अनुसंधान क्षेत्रों के रूप में सामने आए हैं।

Covalent organic frameworks (COFs) are burgeoning class of crystalline porous material, and attracted much attention because of their enormous structural diversity, and tunable pore size. Especially, applications that aim unravelling environmental issues have surfaced as hottest research areas by virtue of their task-specific

सीएसआईआर-सीएसएमसीआरआई CSIR-CSMCRI

उत्प्रेरक दृष्टिकोण से, COF बैकबोन पर सक्रिय उत्प्रेरक के पोस्ट-सिंथेटिक समामेलन से हरित परिस्थितियों में परमाणु-मितव्ययी और आकार-चयनात्मक, पुन: प्रयोज्य क्रॉस युग्मन अभिक्रिया को लाभ हो सकता है। हालाँकि, 3D COF की भागीदारी अभी भी दुर्लभ है क्योंकि उनके प्रकार्यात्मकरण, और संरचनात्मक समाधान चुनौतीपूर्ण हैं। ईमीन-आधारित, डायमंडॉइड COF सूक्ष्म-रंध्रित और सुलभ N-परमाणु से सजाए गए छिद्र दीवार के सूक्ष्म संयोजन का उदाहरण देते है। दोनों से लाभ उठाते हुए, यह सामग्री योग्य बहुचक्रीय CO2 अपटेक-रिलीज़ पुनरावृत्ति के साथ-साथ सराहनीय CO2 चयनात्मकता प्रदर्शित करती है। दिलचस्प है कि COF -C=N- "पेडल" गति के माध्यम से विलायक-सहाय्य छिद्र-विस्तारण संरचना परिवर्तन के साथ CO2 संग्रह में सहवर्ती वृद्धि से गुजरता है। इस तरह की संरचनात्मक गतिशीलता की स्थिर उत्क्रमणीयता अभूतपूर्व CO2

pore structure modulation. From catalytic viewpoint, post-synthetic amalgamation of active catalyst over COF backbone could benefit atom-economic and size-selective, recyclable cross coupling reaction under green conditions. However, involvement of 3D COFs are still rare as their functionalization, and structural resolution are challenging. The imine-based, diamondoid COF exemplifies astute combination of micro-porosity and accessible N-atom decorated pore wall. Benefitting from both, this material displays appreciable CO2 selectivity alongside worthy multicyclic CO2 uptake-release recurrence. Interestingly, the COF undergoes solventassisted alteration to a pore-stretched structure via -C=N- "pedal" motion with concomitant enhancement in CO2 uptake.

चित्र: पोस्ट-धातुकरण के माध्यम से लचीले डायमंडॉइड COF का स्विचेबल CO₂ अधिशोषक और दृश्य-प्रकाश मध्यस्थता, आकार-अनन्य फोटो-उत्प्रेरक के रूप में प्रदर्शन।

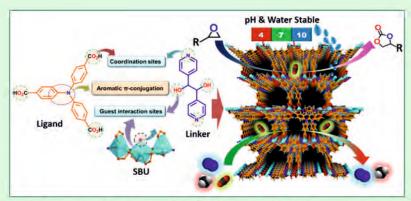
Figures: - Demonstration of flexible diamondoid COF as switchable CO₂ adsorbent and visible-light mediated, size-exclusive photo-catalyst via post-metalation.

अधिशोषण कुंजी को सात चक्रों तक प्रेरित करती है। 2,2'बाईपिरीडिल इकाइयों का एकीकरण समांगी Ru(II)-उत्प्रेरक को सहारा देता है जिससे सर्वप्रथम 3D Ru-COF का निर्माण हुआ। Ru-COF कक्ष तापमान पर तृतीयक एमीन के अत्यधिक पुर्नचक्रणीय ऑक्सीडेटिव साइनेशन के लिए, ऑक्सीजन का हरे विलायक H_2O में चयनात्मक ऑक्सीडेंट के रूप में उपयोग करते हुए, दृश्य-प्रकाश उत्प्रेरक के रूप में कार्य करता है। तद्स्थाने उत्पन्न इमिनियम आयन परमाणु-मितव्ययी फोटोसायनेशन से संबंधित है। इसके अलावा, बड़े Steady reversibility of such structural dynamism instigates unprecedented CO₂ adsorption switch up to seven cycles. Integration of 2,2'-bipyridyl units benefits anchoring of homogeneous Ru(II)-catalyst to device first-ever 3D Ru-COF. The Ru-COF acts as visible-light catalyst for highly recyclable oxidative cyanation of tertiary amines at room temperature, using oxygen as selective oxidant in green solvent H₂O. In situ generated iminium ion relates to atomeconomic photocyanation. Moreover, larger

आकार के सबस्ट्रेट्स α-एमिनोनाइट्राइल्स के मामूली रूपांतरण को प्रदर्शित करते हैं और दुर्लभ आकारचयनात्मक ऑक्सीडेटिव स्ट्रेकर अभिक्रिया का समर्थन करते हैं। यह परिणाम पर्यावरण के अनुकूल मार्ग के माध्यम से अगली पीढ़ी के गतिशील CO₂ अधिशोषक और आशाजनक उत्प्रेरक अनुप्रयोगों के लिए कार्य-विशिष्ट प्रकार्यात्मकताओं के अनुकूलित अभियांत्रिकी में डायमंडॉइड COF की अतिबृहद क्षमता को प्रदर्शित करता है।

sized substrates exhibit minor conversion of α -aminonitriles and endorses rarest size-selective oxidative Strecker reaction. This result demonstrate tremendous potential of the diamondoid COF in tailor-made engineering of task-specific functionalities for next generation dynamic CO_2 adsorbent and promising catalytic applications through environmentally benign route.

ACS Appl. Mater. Interfaces 12 (2020) 48642-48653.


अति-मजबूत MOF में दोहरे-प्रकार्यात्मकरण द्वारा प्रारंभित CO₂ का असाधारण चयनात्मक कैप्चर और स्थिरीकरण

Dual-functionalization triggered exceptionally selective capture and fixation of ${\sf CO}_2$ in ultra-robust MOF

अपने विशाल संरचनात्मक विविधता, ट्यून करने योग्य छिद्र आकारिकी, और कार्य-विशिष्ट प्रकार्यात्मकताओं के उद्देश्यपूर्ण आरोपण के कारण, धातु-कार्बनिक ढांचे (एमओएफ) कार्बन डाइऑक्साइड (CO2) के अधिशोषण और रासायनिक रूपांतरण में सबसे लोकप्रिय अनुसंधान क्षेत्रों के रूप में उभरे हैं। हालांकि, खराब जल-रासायनिक स्थिरता उनकी व्यावहारिक उपयोगिता के लिए प्राथमिक ठोकरें हैं। इसके अलावा, एक एकल एमओएफ में प्रकार्यात्मक कार्बनिक समूहों (एफओजी) और खुली धात् साइटों (ओएमएस) दोनों का छिद्र पर्यावरण मॉडुलन चुनौतीपूर्ण है क्योंकि छिद्र चैनल के साथ एफओजी के सटीक अभिविन्यास में अप्रत्याशितता है। धातु से बंधे विलायकों के साथ छिद्र-दीवार के साथ उपयुक्त रूप से स्थित द्वितीयक निर्माण इकाइयों (एसबीयू) की कमी के कारण बाद की उपलब्धि प्राप्त करना थोड़ा कठिन है। इस आधार पर, हमने रणनीतिक रूप से एक रासायनिक रूप से मजबूत Cd(II)-फ्रेमवर्क का निर्माण इलेक्ट्रॉन-समृद्ध ट्राइकारबॉक्साइलेट लिगैंड, प्रकार्यात्मकृत पाइरिडाइल लिंकर और [Cd3(COO)6] एसबीयू से किया। मुक्त -OH मौईटी युक्त रंधित चैनल, एसबीयू युक्त ओएमएस, और दो गुना इंटरपेनेट्रेशन के माध्यम से उत्पन्न अनुकूलित गुहा का संयोजन, सक्रिय एमओएफ को असाधारण CO2/N2 चयनात्मकता (343.05) के साथ तर्कसंगत CO2 बन्धुता के

Adsorption and chemical conversion of carbon dioxide (CO₂) have emerged as hottest research areas in metal-organic frameworks (MOFs) because of their enormous structural diversity, tunable pore size, and purposeful implantation of task-specific functionalities. However, poor hydro-chemical stability are primary stumble blocks to their practical usability. In addition, pore environment modulation via incorporating both functional organic groups (FOGs) and open metal sites (OMSs) in a single MOF is challenging because of unpredictability in precise orientation of FOG along the porous channel. The later feat is rather tricky due to lack in suitably located secondary building units (SBUs) along the pore-wall with metal-bound solvents. Based on these, we strategically constructed a chemically robust Cd(II)-framework from electron-rich tricarboxylate functionalized pyridyl linker, and [Cd₃(COO)₆] SBU. A combination of free -OH moiety affixed porous channel, OMS containing SBUs, and optimized cavity, generated via two-fold interpenetration, renders the activated MOF displaying reasonable CO2 affinity with exceptional CO₂/N₂ selectivity (343.05)

चित्र: चयनात्मक अधिशोषण और CO₂ के रासायनिक स्थिरीकरण के लिए दोहरे-प्रकार्यात्मकृत छिद्रों के साथ कीमो-मजबूत एमओएफ की निर्माण रचना का योजनाबद्ध चित्रण।

Figures: Schematic illustration of the formation of chemo-robust MOF with dual-functionalized pores for selective adsorption and chemical fixation of CO_2 .

साथ-साथ बहुचक्रीय CO2 शोषण पुनरावृत्ति प्रदर्शित करता है। दोहरे-प्रकार्यात्मककरण और सह-उत्प्रेरक की सहक्रियात्मक भूमिकाओं से लाभान्वित, अपेक्षाकृत हल्की पिरिस्थिति में उच्च यील्ड के साथ चक्रीय कार्बोनेट का उत्पादन करने के लिए एपॉक्साइड के साथ कुशल विलायक-मुक्त CO2 स्थिरीकरण, व्यापक सब्सट्रेट गुंजाइश और संतोषजनक पुन: प्रयोज्यता दर्शाता है। चूंकि चयनात्मक CO2 अधिशोषण और इनका रासायनिक मूल्यांकन पर्यावरणीय उपचार के लिए सबसे महत्वपूर्ण वैश्विक एजेंडा हैं, यह छिद्र प्रकार्यात्मकृत, और असाधारण रूप से मजबूत MOF एक स्मार्ट और भविष्य की सामग्री का प्रतिनिधित्व करता है।

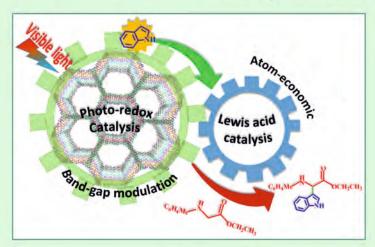
alongside multicyclic CO₂ sorption recurrences. Benefitting from synergistic roles of dual-functionalization and co-catalyst, delineates efficient solvent-free CO2 fixation with epoxide to produce cyclic carbonate in high yield under relatively mild condition, affording broad substrate scope satisfactory reusability. Given selective CO2 adsorption and its chemical valorization are most important global agendas environmental remediation, this pore functionalized, and exceptionally robust MOF represents one-of-a-kind smart and futuristic material.

Mater. Chem. Front., 5 (2021) 979-994.

दृश्य-प्रकाश उत्प्रेरित क्रॉस-कपलिंग से इंडोलिग्लिसन के लिए पूर्व-प्रकार्यात्मकृत सहसंयोजक कार्बनिक ढांचे में संरचनात्मक अभियांत्रिकी

Structural-engineering in pre-functionalized covalent organic framework for visible-light catalysed cross-coupling to indolylglycines

फोटोरेडॉक्स उत्प्रेरण में बड़ी प्रगति के बावजूद, विषमांग तरीके से नाइट्रोजन परमाणु से सटे साइट-विशिष्ट C-H बांड प्रकार्यात्मकरण अभी भी अन्वेषण रहित है। इस क्षेत्र में प्रमुख चुनौतियों में शामिल हैं: (ए) एक ही सामग्री पर विविध प्रकार्यात्मकताओं को मिश्रित करने के लिए तर्कसंगत


In spite of major advances in photoredox catalysis, site-specific C–H bond functionalization, adjacent to a nitrogen atom is still unexplored through heterogeneous manner. Major challenges in this area involve: (a) rational protocol to blend diverse

सीएसआईआर-सीएसएमसीआरआई CSIR-CSMCRI

प्रोटोकॉल, (बी) फोटोउत्प्रेरको के लिए प्रभावी बैंड-गैप मॉड्यूलीकरण, और (सी) आदर्श अवलंब की रचना जो कि संश्लेषण पश्चात विविध संशोधनों के लिए पर्याप्त छिद्र-अनुकूलता और स्थिरता को सहन कर सके। इसके लिए, सहसंयोजी कार्बनिक ढांचे (सीओएफ) ने क्रिस्टलीय पोरस सामग्री के बढ़ते वर्ग के रूप में अपनी बड़ी सरंध्रता, उच्च स्थिरता और विविध संरचनात्मक अभियांत्रिकी के कारण बहुत ध्यान आकर्षित किया है। विशेष रूप से, सतत उत्प्रेरण का लक्ष्य रखने वाले अनुप्रयोग सबसे अधिक मांग वाले अनुसंधान क्षेत्रों के रूप में सामने आए हैं। विशेष रूप से, COF बैकबोन पर सक्रिय समांगी उत्प्रेरक का तीक्ष्ण समामेलन

functionalities over a single material, (b) effective band-gap modulation photocatalysts, and (c) designing support that bears enough pore-tunability and stability towards a variety of post-synthetic modification. To this end, covalent organic frameworks (COFs) as burgeoning class of crystalline porous material have attracted much attention because of their large porosity, high stability, and diversified structural engineering. Especially, applications that aim sustainable catalysis have surfaced as most demanding research areas. In particular, incisive amalgamation of active

चित्रः वातापेक्षी स्थिति के तहत इंडोल के साथ ग्लाइसिन व्युत्पन्न के दृश्य प्रकाश मध्यस्थ एवं परमाणु-मितव्ययी lpha-एरायलीकरण के लिए समांगी जटिल-प्रकार्यात्मकृत सीओएफ का योजनाबद्ध चित्रण।

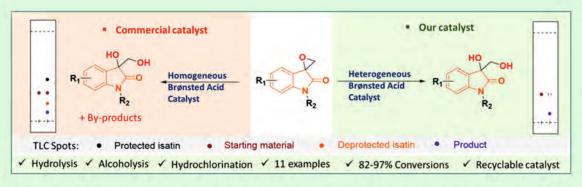
Figures: Schematic illustration of homogeneous complex-functionalized COF for visible light mediated and atom-economic α -arylation of glycine derivative with indoles under aerobic condition.

परमाणु-मितव्यता और अत्यधिक पुनचक्रणीय क्रॉस-डिहाइड्रोजनेटिव कपलिंग (सीडीसी) अभिक्रियाओं के लिए छिद्र-पर्यावरण मॉड्यूलीकरण को लाभ पहुंचा सकता है। ग्लाइसीन व्युत्पन्न के दृश्य प्रकाश मध्यस्थ प्रत्यक्ष α-एराइलेशन के उद्देश्य से, हमने [2,2'] बाइपिरीडिल (Вру) इकाई प्रकार्यात्मक छिद्रों के साथ रासायनिक रूप से मजबूत और द्वि-आयामी (2D) इमीन-आधारित सीओएफ का निर्माण किया। सीओएफ एंकरिंग सिक्रय समांगी Ru(II) -उद्योरक को Ru-सीओएफ तैयार करने में सहायता करता है।

homogeneous catalyst over COF backbone could benefit pore-environment modulation for atom-economic and highly recyclable cross- dehydrogenative coupling (CDC) reactions. Aiming at visible light mediated direct α -arylation of glycine derivative, we designedly constructed a chemically robust and two- dimensional (2D) imine-based COF with [2,2']bipyridyl (Bpy) unit functionalized pores. The COF benefits anchoring active homogeneous Ru(II)-catalyst to devise Ru-

संरचनात्मक अभियांत्रित सीओएफ में बैंड-गैप विशेषताओं का चतुर मॉडुलन द्वितीयक एमीन और इंडोल्स के बीच दृश्य प्रकाश प्रारंभित ऑक्सीडेटिव क्रॉस-कपलिंग की सुविधा प्रदान करता है, जिससे सौम्य परिस्थिति में उत्कृष्ट यील्ड में इंडोलिंग्लिसन व्युत्पन्न का उत्पादन होता है। फोटोकैटलिस्ट स्थिर Ru-सीओएफ प्रशंसनीय पुन: प्रयोज्यता और उत्कृष्ट प्रकार्यात्मक समूह सहिष्णुता दिखाता है, जहां फोटोउत्प्रेरण तंत्र एकल इलेक्ट्रॉन स्थानांतरण अधीन मूलक मार्ग के द्वारा व्याख्खित है, और तद्स्थाने उत्पन्न इमिनियम आयन मध्यस्त के माध्यम से परमाणु-मितव्ययी मार्ग का पुन: सत्यापन करता है।

COF. Astute modulation of band-gap characters in structurally engineered COF facilitates visible light triggered oxidative cross-coupling between secondary amines and indoles, producing indolylglycine derivatives in excellent yield under mild condition. The photocatalyst immobilized Ru-COF shows admirable reusability and excellent functional group tolerance, where photocatalytic mechanism is detailed in light of single electron transfer governed radical pathway, and further validates atom-economic route via in situ generated iminium ion intermediate.


Appl. Catal. B-Environ., 292 (2021) 120149.

पुन: प्रयोज्य सल्फोनिक एसिड प्रकार्यात्मकृत कार्बन उत्प्रेरक का उपयोग करके स्पाइरो एपोक्सीऑक्सिंडोल्स का रिंग-ओपनिंग जल-अपघटन

Ring-opening hydrolysis of spiro-epoxyoxindoles using a reusable sulfonic acid functionalized carbon catalyst

संभावित जैविक अनुप्रयोगों के लिए छोटे अणुओं के निर्माण हेतु एक प्रभावी रणनीति का विकास एक बड़ी चुनौती है। एपॉक्साइड हाइड्रोलेज द्वारा उत्प्रेरित बहिर्जात पदार्थों के विषहरण के लिए जीवित जीवों में एपॉक्साइड का जल-अपघटन एक महत्वपूर्ण अभिक्रिया है। संश्लेषिक रसायन विज्ञान में, जल-अपघटनीय रिंग ओपनिंग (एचआरओ) अभिक्रिया से विसिनल डायोल का निर्माण होता है, जो प्राकृतिक उत्पादों और औषधीय में एक प्रमुख संरचनात्मक रूप है। हालांकि, एपॉक्साइड रूप का सक्रियण और एचआरओ अभिक्रिया की उत्पाद चयनात्मकता को खनिज अम्ल और कुछ हद तक समांगी उत्प्रेरक के साथ नियंत्रित करना बड़ी चुनौती बनी हुई है। वास्तव में, जैवसक्रिय उत्पाद में धातु की अशुद्धता की लेश मात्रा की उपस्थिति भी इसके संभावित अनुप्रयोगों के लिए अभिक्रिया विकास में बाधा डालती है। इसने एक वैकल्पिक सतत मार्ग की पेशकश करने के लिए सुदृढ़ और धातु रहित उत्प्रेरक के विकास को आवश्यक बनाया है। इस प्रसंग में, हमने हाल ही में स्पाइरो-ऑक्सिंडोल आधारित विसिनल डायोल के संश्लेषण के लिए एक सल्फोनिक अम्ल प्रकार्यात्मकृत नाइट्रोजन युक्त कार्बन उत्प्रेरक विकसित किया। 3-हाइड्रॉक्सी, 3-प्रतिस्थापित-2-

The development of an effective strategy for the construction of small molecules with potential biological applications is a great challenge. The hydrolysis of epoxide is an important reaction in living organisms for the detoxification of exogeneous substances catalyzed by epoxide hydrolases. In synthetic chemistry, hydrolytic ring opening (HRO) reaction leads to the formation of vicinal diols, a key structural motif in natural products and pharmaceuticals. However, the activation of epoxide moiety and controlling the product selectivity of a HRO reaction remains a great challenge with mineral acids and to the extent with homogeneous catalysts. In fact, the presence of even trace amount of metal impurity in the bioactive product hinders the reaction development for its potential applications. This has necessitated the development of robust and metal-free catalyst to offer an alternative sustainable route. In this context, we recently developed a sulfonic acid functionalized nitrogen-rich carbon catalyst for the synthesis of spiro-oxindole

चित्र: स्पाइरो-एपॉक्सीऑक्सिंडोल्स के रिंग-ओपनिंग जल-अपघटन के माध्यम से विसिनल डायोल का उत्प्रेरित संक्षेषण। Figure: Catalytic synthesis of vicinal diols via ring-opening hydrolysis of spiro-epoxyoxindoles.

ऑक्सिंडोल व्युत्पन्न शक्तिशाली निर्माण खंड हैं, जो महत्वपूर्ण जैविक और चिकित्सीय गतिविधियों को प्रदर्शित करते हैं। हाइड्रॉक्सी द्वारा प्रतिस्थापित ऑक्सिंडोल कोर की सर्वव्यापकता ने हमें सस्ते कुकुरबिटड[6]कायूरिल (सीबी 6) से एक प्रभावी उत्प्रेरक विकसित करने के लिए प्रेरित किया। उत्प्रेरक के लाभ में शामिल हैं (1) संश्लेषिक स्गमता एवं वर्धनीयता, (2) समृद्ध कार्बन और नाइट्रोजन अनुपात, और (3) आगे के प्रकार्यात्मकरण के लिए बदलाव करने योग्य। संश्लेषित उत्प्रेरक का अपेक्षित वैश्लेषिक तकनीकों के द्वारा लक्ष्ण-वर्णन किया गया। एचआरओ अभिक्रिया में उत्प्रेरक की प्रभावकारिता का परीक्षण किया गया था और वांछित उत्पाद को 97% रूपांतरण के साथ प्राप्त किया गया। इसके अलावा, उत्प्रेरक ने सबस्ट्रेट्स में विभिन्न इलेक्ट्रॉनिक और स्टेरिक पदार्थों के साथ व्यापक सार्वभौमिकता दिखाई। अल्कोहल और हैलाइड स्रोतों ने भी सौम्य अभिक्रिया परिस्थिति में अच्छा काम किया। उत्प्रेरण प्रक्रिया पून: प्रयोज्य है और एक मॉड्यूलर संश्लेषण की अनुमति देता है, इस प्रकार अधिक समान संरचनाओं तक पहुंचने के लिए एक मंच प्रदान करता है।

based vicinal diol. 3-hydroxy, 3-substituted-2oxindole derivatives are powerful building blocks, exhibit significant biological and therapeutic activities. The ubiquity of the hydroxy substituted oxindole core, prompted us to develop an effective catalyst derived from cucurbit[6]uril (CB6). The advantage of the catalyst includes (1) synthetic-ease and scalable, (2) rich carbon and nitrogen ratio, and (3) tunable for further functionalization. The synthesized catalyst was characterized with requisite analytical techniques. The catalyst was tested for its efficacy in the HRO reaction and the desired product was achieved with 97% conversion. Also, the catalyst showed wide generality with different electronic and steric substituents in the substrates. Alcohol and halide sources also worked well under mild reaction conditions. The catalytic process is recyclable and also allows a modular synthesis, thus providing a platform to access more similar structures.

RSC Advances 11 (2021) 12808-12814.

एराइलएसिटिक एसिड सिंथॉन का ऐनिलीन के साथ उत्प्रेरित प्रत्यक्ष α-एमिनेशन Catalytic direct α-amination of arylacetic acid synthons with anilines

सामान्य एलिफैटिक सबस्ट्रेट्स के तुलनात्मक रूप से निष्क्रिय C–H बॉन्ड प्रकार्यात्मकरण, जैसे कार्बोक्जिलक एसिड, कीटोन, एमाइन आदि पर आधुनिक खोजों ने

Modern discoveries on the comparatively passive C–H bond functionalization of common aliphatic substrates, e.g. carboxylic

अनुरूप आणविक लक्ष्यों के पूर्वसंश्लेषण को काफी सरल बना दिया है। एक विशिष्ट एल्काइल C-H बॉन्ड को सक्रिय करने के लिए साधारण दृष्टिकोण मुख्य रूप से एक निर्देशन समूह के डिजाइन पर निर्भर करता है, जो एक संक्रमण धातू उत्प्रेरक को उष्मागतिकी रूप से वरीय पांच- या छह-सदस्यीय धातुचक्र मध्यवर्ती के माध्यम से आम तौर पर β-या γ- स्थिति पर स्थित C-H बांड को चुनिंदा रूप से तोड़ने में सहायता करता है। दुर्भाग्य से, एक तनावपूर्ण चार-सदस्यीय धातुचक्र मध्यवर्ती की पूर्व-आवश्यकता के कारण एल्काइल सब्सट्रेट के α-C-H प्रकार्यात्मकरण के लिए एक समान प्रत्यक्ष दृष्टिकोण की भविष्यवाणी नहीं की जा सकती है। इसके अलावा, निर्देशन समूह के समीप एरिल रूप प्रतिस्थापित, जैसा ऐरिलएसिटिक एसिड में है, एलिफेटिक सबस्ट्रेट्स के लिए एरोमेटिक रिंग के अधिक अम्लीय ऑर्थो-प्रोटॉन के सक्रियण को चिरसम्मत छह-सदस्यीय धात्चक्र मध्यवर्ती के माध्यम से सुगम बनाया गया। इस प्रकार, एरिल एसिटिक एसिड के रेजियोस्पेसिफिक प्रकार्यात्मकरण में पर्याप्त चुनौतियाँ हैं। हमने बेंजाज़ोल के रूप में अनुकूलन के माध्यम से एरिल एसिटिक एसिड के लिए विभिन्न एनिलीन का उपयोग करके एक अद्वितीय α-एमिनेशन दृष्टिकोण विकसित किया। α-(N-एरिलएमिनो) एसिटिक एसिड समकक्षों तक पहुंचने के लिए लौह-आधारित उत्प्रेरक प्रणाली का उपयोग करके एसइटी तंत्र के माध्यम से अभिक्रिया आगे

acids, ketones, amines etc. have significantly simplified the retrosynthesis of tailored molecular targets. The general approach to trigger a specific alkyl C-H bond primarily relies on the design of a tethered directing group, which assists a transition metal catalyst to selectively cleave the C-H bond situated typically at β - or γ - position via the thermodynamically preferred five- or sixmembered metallacycle intermediates. Unfortunately, an analogous approach cannot be foretold for the α-C-H functionalization of alkyl substrates due to the pre-requisite of a stressed four-membered metallacycle intermediate. In addition, for substrates, holding substituent close to the directing group as in arylacetic acids, the activation of more acidic ortho-protons of the aromatic ring is facilitated classical six-membered metallacycle intermediates. Thus, regiospecific α-C-H functionalization arylacetic acids possesses substantial challenges. We have developed a unique αamination approach using various anilines for arylacetic acids via adapting as benzazoles. reaction proceeds through mechanism utilizing an iron-based catalyst system to access α-(N-arylamino)acetic acid equivalents. Modification of approved drugs,

चित्र: लौह उत्प्रेरित बेंजाज़ोल्स के माध्यम से एरीलएसिटिक एसिड α - (एराइलएमिनेशन)। Figure: Iron catalysed α -(arylamination) of arylacetic acids via benzazoles.

बढ़ती है। अनुमोदित दवाओं में संशोधन, बेंजाज़ोल सहायक का सुगम अनुभेदन और एमाइड लिंकेज बनाने की परिस्थितियों की सहिष्णुता इस रणनीति की संभावित प्रयोज्यता प्रदंशित करती है। facile cleavage of the benzazole auxiliary and tolerance of amide linkage forming conditions constitute the potential applicability of this strategy.

J. Org. Chem., 85 (2020) 13363-13374.

बाइन्यूक्लियर डबल स्ट्रैंडेड हेलिकेट्स: एपॉक्साइड्स और डायोल से CO2 का चक्रीय कार्बोनेट में रूपांतरण

Binuclear double stranded helicates: conversion of CO₂ into cyclic carbonate from epoxides and diol

कार्बन डाइऑक्साइड को जलवायु परिवर्तन में एक प्रमुख योगदानकर्ता माना जाता है। यह विभिन्न प्रकार के रासायनिक संक्षेषण के लिए एक लाभप्रद और सस्ते C1 स्रोत के रूप में भी कार्य करता है। इस प्रकार चक्रीय कार्बोनट के संक्षेषण के लिए CO2 के उपयोग ने उद्योग और शिक्षाविदों का बहुत ध्यान आकर्षित किया है। इस वैश्विक मुद्दे से निपटने के लिए, हालांकि दुनिया में हर कोई अलग-अलग तरीकों से कोशिश कर रहा है, हमनें CO2 को कुछ उपयोगी रसायनों में बदलने का प्रयास किया हैं। इस दिशा में, पाइरिडिलहाइड्राज़ोन आधारित लिगैंड्स के Co, Ni और Zn आधारित द्वि-न्यूक्लियर डबल-स्ट्रैंडेड हेलिक्सों की एक श्रृंखला को संक्षेषित किया गया। अणुओं की क्रिस्टल संरचना हेलिक्स के निर्माण की पृष्टि करती है। Ni-2, Zn-2 ठोस अवस्था में हेलिकेट के एपॉक्साइड में साइक्लोएडिशन

Carbon dioxide is believed to be a major contributor to climate change. It also serves as an advantageous and an inexpensive C1 source for a diverse array of chemical synthesis. Thus the utilization of CO2 for the synthesis of cyclic carbonate has attracted great attention from industry and academics. To tackle this global issue, although everyone world trying are different methodologies we attempted converting the CO2 to some useful chemicals. In this direction, a series of Co, Ni and Zn based binuclear double-stranded helicates of pyridylhydrazone based ligands were synthesized. The crystal structure of the molecules confirms the formation of a helix. The Ni-2, Zn-2 end-up with helicate formation in solid state and all the

[B]

चित्र: [ए] उत्प्रेरक के रूप में संश्लेषित और प्रयुक्त हेलीकेट्स, [बी] उत्प्रेरक अभिक्रिया।

Figure: [A] Helicates synthesized and applied as catalyst, [B] Catalytic reaction.

के लिए उत्प्रेरक के रूप में प्रयोग किया गया। उत्प्रेरक एपॉक्साइड को चक्रीय कार्बोनेट में चुनिंदा रूप से परिवर्तित करता है, जो विलायक-मुक्त परिस्थितियों में अधिकांश एलिफैटिक एपॉक्साइड के साथ बेहतर रूपांतरण देता है। टीबीएबी की लेश मात्रा के उपयोग से टीओएफ में 15394/h तक महत्त्वपूर्ण सुधार हुआ है जो कि रिपोर्ट किए गए अधिकांश सक्रिय धातु उत्प्रेरकों के बराबर है। उत्प्रेरक को जैवनिम्ननीय 1,2-डायोल को निर्जलीकारक एजेंट के रूप में 2-सायनोपाइरीडीन का उपयोग करके संबंधित चक्रीय कार्बोनेट में परिवर्तित करने के लिए भी सक्रिय पाया गया।

helicates are applied as a catalyst for cycloaddition of CO₂ to epoxides. The catalyst converts epoxide to cyclic carbonate selectively giving better conversion with most of the aliphatic epoxides, under solvent-free conditions. The use of small amount of TBAB significantly improved the TOF to 15394/h which is comparable to most of the reported active metal catalysts. The catalyst was also found to be active to convert biodegradable 1,2-diols to corresponding cyclic carbonate using 2-cyanopyridine as dehydrating agent.

ACS Omega 5 (2020) 14890-14899.

तद्स्थानें उत्पन्न Ru(0)-HRO@Na-β: एक ऊर्जा कुशल शर्करा हाइड्रोजनीकरण उत्प्रेरक

In situ generated Ru(o)-HRO@Na-β: an energy-efficient sugar hydrogenation catalyst

शर्करा से शर्करा अल्कोहल के हाइड्रोजनीकरण के लिए एक हरित प्रक्रिया को जलीय माध्यम में हाइड्स रूथेनियम ऑक्साइड का उपयोग करके Na-β जिओलाइट पर आलंबित एक पूर्व-उत्प्रेरक के रूप में डिजाइन किया गया। अनुकूलित अभिक्रिया परिस्थितियों में, जाइलोज़, ग्लूकोज, और मैनोज़ जैसे शर्कराओं का 100% चयनात्मकता के साथ संबंधित शर्करा अल्कोहल जाइलिटॉल, सॉर्बिल, और मैनिटॉल में पूर्ण परिवर्तन हो गया। पूर्व-उत्प्रेरक अभिक्रिया के दौरान, H2 की उपस्थिति में तद्स्थानें सक्रिय Ru(0) स्पिसीज् में परिवर्तित हो जाता है, जो हाइड्रोजनीकरण के लिए जिम्मेदार है। उत्प्रेरक गतिविधि में बिना किसी नुकसान के पांच चक्रों तक पुनर्चक्रणी था। सक्रिय Ru (0) स्पिसीज् में पूर्व-उत्प्रेरक का अपचयन अभिक्रिया तापमान और H, दबाव पर निर्भर है। अभिक्रिया तापमान और हाइड्रोजन दबाव में वृद्धि के साथ Ru(0) निर्माण में वृद्धि हुई और परिणामस्वरूप शर्करा के हाइड्रोजनीकरण में वृद्धि देखी गई। इसके अलावा, पूर्व-उत्प्रेरक से Ru(0) के तद्स्थाने उत्पादन का मूल्यांकन जल, मेथनॉल और टेट्राहाइड्रोफ्यूरॉन जैसे विभिन्न विलायकों में किया गया। पूर्व-उत्प्रेरक को अपचयित करने में जलीय माध्यम सबसे कुशल पाया गया। यह कार्य बायोमास-आधारित हाइड्रोजनीकरण अभिक्रियाओं के लिए एक कृशल पूर्व-उत्प्रेरक के रूप में आलंबित हाइड्रस

A green process for the hydrogenation of sugars to sugar alcohols was designed in aqueous medium using hydrous ruthenium oxide as a pre-catalyst supported on Na-β zeolite. Under optimized reaction conditions, sugars such as xylose, glucose, and mannose converted completely to the corresponding sugar alcohols xylitol, sorbitol, and mannitol with 100% selectivity. The pre-catalyst is converted in situ to active Ru(o) species during the reaction under H2, which is responsible for the hydrogenation. The catalyst was recyclable up to five cycles with no loss in activity. The reduction of precatalyst to the active Ru(o) species is dependent on the reaction temperature and H₂ pressure. Increased Ru(o) formation and consequently increased hydrogenation of sugars was observed with an increase in reaction temperature and hydrogen pressure. Further, in situ generation of Ru(o) from precatalyst was assessed in different solvents such as water, methanol, and tetrahydrofuran. Aqueous medium was found to be the most efficient in reducing pre-catalyst. This work further demonstrates the use of supported

रूथेनियम ऑक्साइड के अग्रतर उपयोग को प्रदर्शित करता hydrous ruthenium oxide as an efficient pre-

catalyst for biomass-based hydrogenation reactions.

तालिका: कुशल ऊर्जा तदस्थाने उत्पादित Ru(0)@HRO (हाइड्स रूथेनियम ऑक्साइड) उत्प्रेरक का इस्तेमाल करते हुए शर्करा का शर्करा अल्कोहॉल में हाइड्रोजनीकरण।

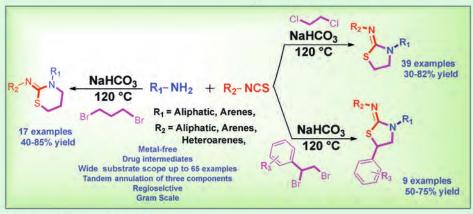
Table: Hydrogenation of sugars to sugar alcohols using energy efficient in situ generated Ru(o)@HRO (Hydrous Ruthenium Oxide) catalyst.

	OH	OH -	RO/Na-β ion condition	HO^	OH	~ _{OH}
	OH OF	I	F. Sharanday		OH OH	_
Entr y	Catalyst/Pre- catalyst	Catalyst/Pre- catalyst (mg)	Temp (°C)	Pressure in bar (H ₂)	Time (min)	Conv. (%)
1	Blank		120	30	60	n.o
2	5% Ru/C	50	120	30	60	99
3	HRO/Na-β	50	120	30	60	100
4	HRO/Na-β	50	100	30	60	100
5	HRO/Na-β	50	80	30	60	100
6	HRO/Na-β	50	60	30	60	80
7	HRO/Na-β	50	80	20	60	100
8	HRO/Na-β	50	80	10	60	60
9	HRO/Na-β	50	80	20	30	100
10	HRO	2.5	80	20	30	85
11	RuO ₂	2.5	80	20	30	30
12b	HRO	2.5	80	20	30	8
13	Ru-HRO-1	2.5	80	20	30	84
14c	HRO/Na-β	250	80	50	100	>99
15 ^d	HRO/Na-β	500	80	50	68	99
16e	HRO/Na-β	1000 (1 g)	80	50	47	99
17 ^e	Ru- HRO@Na-β ^f	950	80	50	26	99

"Reaction conditions: 1 g of xylose in 40 mL of H₂O, 50 mg of HRO/Na-β pre-catalyst (5 wt% of Ru), 60-120 °C, 10-30 bar H₂, 30-60 min. b-1 g of xylose 40 mL of methanol; c-5 g xylose in 40 mL of H₂O; d-10 g xylose in 40 mL of H₂O; e-15 g xylose in 40 mL of H₂O; f-Recovered catalyst from entry 16; n.o-Not observed.

Front. Chem. 8 (2020) 525277.

विक-डाइहैलाइड्स और आइसोथायोसाइनेट्स के अमीन्स त्रि घटक युग्मन के माध्यम से थियाजोलिङिनडमिन्स/ थियाजिनन-2-डमिन्स का संश्लेषण


Synthesis of thiazolidinimines/ thiazinan-2-imines via three component coupling of amines, vic-dihalides and isothiocyanates

धातु मुक्त परिस्थितियों में अमीन, आइसोथायोसाइनेट्स An expeditious approach for the synthesis of और डाइहैलाइड्स के तीन घटक युग्मन (टीसीसी) के thiazolidinimines thiazinan-2-imines and

माध्यम से थियाज़ोलिडीनइमीइन और थियाज़िनान-2-इमीन के संश्लेषण के लिए एक त्वरित दृष्टिकोण विकसित किया गया। डाईक्लोरोइथेन (डीसीई) को वलयीकरण के लिए C-2 स्रोत के रूप में प्रयोग किया गया और पहली बार संतुप्त पांच सदस्यीय हेट्रोसायकल प्राप्त किया डाईक्लोरोइथेन, 1,2-डाइब्रोमो-ऑक्टेन और (1,2-डाइब्रोमोइथाइल) बेंजीन को वलयीकरण अभिक्रियाओं के लिए C-2 स्रोत के रूप में प्रयोग किया और अनुरूप संतुप्त पांच सदस्यीय हेट्रोसायकल प्राप्त किए। उन्हीं परिस्थितियों में 1,3-डाईब्रोमोप्रोएन के साथ, अनुरूप संतुप्त छह सदस्यीय हेटोसायकल को अच्छी यील्ड में प्राप्त किया गया। ये एलिफेटिक हेट्रोसायकल विलंबित चरण प्रकार्यात्मकरण के माध्यम से औषधि की खोज प्रक्रिया को बढाते हैं। विधि आइसोथायोसाइनेटस (जैसे एरोमेटिक, एलिफैटिक, चक्रीय) और अमीन जैसे एरोमेटिक, एलिफैटिक, चक्रीय, एडामेंटीन, थायोफीन-2-यलमेथेनमीन और यलमेथेनमीन शामिल हैं, दोनों के लिए व्यापक सब्सट्रेट दायरे में अच्छी तरह से काम करती है। वाणिज्यिक अनुप्रयोगों के लिए प्रक्रिया की व्यवहार्यता को सत्यापित करने के लिए, चार उत्पादों को अनुकृलित परिस्थितियों में 11.0 मिमीमोल पैमाने पर संश्लेषित किया गया।

through three component coupling (TCC) of amines, isothiocynates and dihalides under metal-free conditions has been developed. Dichloroethane (DCE) employed as C-2 source for the annulation and obtained saturated five membered heterocycles first time. We have employed dichloroethane, 1,2-dibromo-ocatne and (1,2-dibromoethyl) benzenes as C-2 source for the annulation reactions and obtained the corresponding saturated five membered heterocycles. Under the same conditions, with 1,3-dibromoproane, the corresponding saturated six membered heterocycles were obtained in good yields. These aliphatic heterocycles enhance the drug discovery process through late stage functionalization. The method works well with broad substrate scope with respect to both isothiocynates (such as aromatic, aliphatic, cyclic) and amines such as aromatic, aliphatic, cyclic, adamantine including thiophen-2ylmethanamine and furan-2-ylmethanamine. To validate the feasibility of the process for commercial applications, four products were synthesized at 11.0 mmol scale under the optimized conditions.

चित्रः क्षार मध्यरःथ हेट्रोसायकल का संश्लेषण।

Figure: Base mediated synthesis of heterocycles.

Synth. Commun., 51 (2021) 1340-1352.

इमिडाज़ो [1,2-a] पाइरीडीन ईथर का हाइपरवैलेंट आयोडीन मध्यस्थ संक्षेषण Hypervalent iodine mediated synthesis of imidazo[1,2-a] pyridine ethers

इमिडाजो[1,2-a]पाइरीडीन्स के C-3 प्रक्रियात्मकता पर अपने शोध को जारी रखते हुए, हमने इथाइलीन ग्लाइकॉल का उपयोग मेथॉक्सी इथेनॉल के स्रोत और विलायक के रूप में करते हुए धातु मुक्त परिस्थिति में इमिडाज़ो[1,2-a]पाइरीडीन ईथर के संश्लेषण के लिए एक कुशल और चयनात्मक विधि विकसित की। विधि अन्य फ्यूज्ड हेट्रोसायकल जैसे बेंजो[d]इमिडाज़ो[2,1-b]थियाजोल पर भी लागू होता है, जिसमें 2-(थायोफेन-2-यल)बेंजो [d]इमिडाज़ो [2,1-b]थायाजोल और इंडाज़ोल शामिल हैं। हमारी जानकारी के अनुसार यह मेथॉक्सी इथेनॉल के स्रोत के रूप में एथिलीन ग्लाइकॉल के उपयोग की पहली रिपोर्ट है। नियंत्रिण प्रयोगों से पता चलता है कि, जब इमिडाज़ो[1,2-a]पाइरीडीन की C-3 स्थिति अवरुद्ध हो जाती है, तो अभिक्रिया किसी अन्य स्थान पर नहीं होती है, जो विधि की रेजियोसेलेक्टिविटी को इंगित करती है।

In continuation of our research on C-3 functionalization of imidazo[1,2-a]pyridines, we have developed an efficient and selective method for the synthesis of imidazo[1,2a]pyridine ethers using ethylene glycol as a methoxy ethanol source and as a solvent under metal-free condition. The method is also applicable to other fused heterocycles benzo[d]imidazo[2,1-b]thiazoles, including 2-(thiophen-2-yl)benzo[d] imidazo [2,1-b]thiazole and indazole. To the best of our knowledge this is the first report on the utilization of ethylene glycol as source of methoxy ethanol. Control experiments suggest that, when C-3 position of imidazo[1,2a]pyridine is blocked, the reaction does not takes place at any other position indicates the regioselectivity of the method.

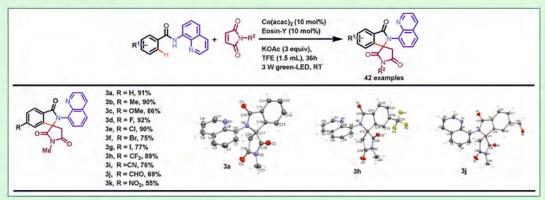
चित्र: इमिडाज़ो[1,2-ए]पाइरिडीन ईथर का संश्लेषण।

Figure: Synthesis of imidazo[1,2-a]pyridine ethers.

New J. Chem., 45 (2021) 7491-7495.

आइसोइंडोलोन स्पाइरोसक्सिनिमाइड्स का कक्षताप पर संश्नेषण: दृश्य-प्रकाश फोटोउत्प्रेरण और कोबाल्ट उत्प्रेरित C-H सक्रियण का समन्वयन

Room-temperature synthesis of isoindolone spirosuccinimides: merger of visible-light photocatalysis and cobalt catalyzed C–H activation


आइसोइंडोलोन स्पाइरोसिक्सिनिमाइड्स के संश्लेषण के लिए A एक कोबाल्ट उत्प्रेरक के साथ एक फोटोउत्प्रेरक का fu समन्वयन करके बेंजामाइड्स के एक कक्षताप पर C-H

A room temperature C-H bond functionalization of benzamides has been developed by merging a photocatalyst with a cobalt catalyst for the synthesis of isoindolone

सीएसआईआर-सीएसएमसीआरआई CSIR-CSMCRI

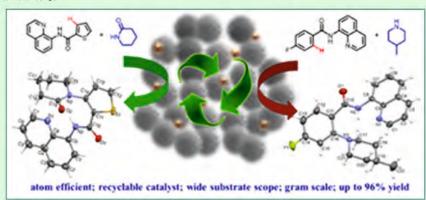
बॉन्ड प्रकार्यात्मकरण को विकसित किया गया। अभिक्रिया वातापेक्षी परिस्थितियों में होती है और किसी भी बाहरी सेक्रीफिसियल उपचयनकारक जैसे Ag(I) या Mn(III) लवण की आवश्यकता नहीं होती है। दृश्य प्रकाश फोटोउत्प्रेरक को सक्रिय करता है और यह एक इलेक्ट्रॉन हस्तांतरण अभिकर्मक के रूप में कार्य करता है और कोबाल्ट कॉम्पलेक्स के ऑक्सीडेशन स्टेट को संशोधित करके मौलिक ऑगोंमेटेलिक चरणों में मदद करता है। इस C-H बॉन्ड प्रकार्यात्मकरण और स्पाइरोसाइक्लाइजेशन ने व्यापक सब्सट्रेट दायरा और अच्छी प्रकार्यात्मक समूह सिहण्णुता को दिखाया। प्रायोगिक परिणाम के आधार पर एक संभावित अभिक्रिया तंत्र प्रस्तावित किया गया जिसमें दिखाया गया कि C-H बांड सिक्रयण अनुत्क्रमणीय है और दर-निर्धारण कदम नहीं है।

spirosuccinimides. The reaction proceeds in aerobic conditions and does not require any sacrificial external oxidants such as Ag(I) or Mn(III) salts. Visible light activates the photocatalyst and it acts as an electron transfer reagent and helps in the fundamental organometallic steps by modulating the oxidation state of the cobalt complex. This C-H bond functionalization and spirocyclization showed wide substrate scope and good functional group tolerance. A possible reaction mechanism was proposed from the experimental outcome showing C-H bond activation is irreversible and not the rate-determining step.

चित्रः मेटालाफोटोउत्प्रेरण द्वारा आइसोइंडोलोन स्पाइरोसिक्सिनिमाइड्स का संश्लेषण।

Figure: Synthesis of Isoindolone Spirosuccinimides by Metallaphotocatalysis.

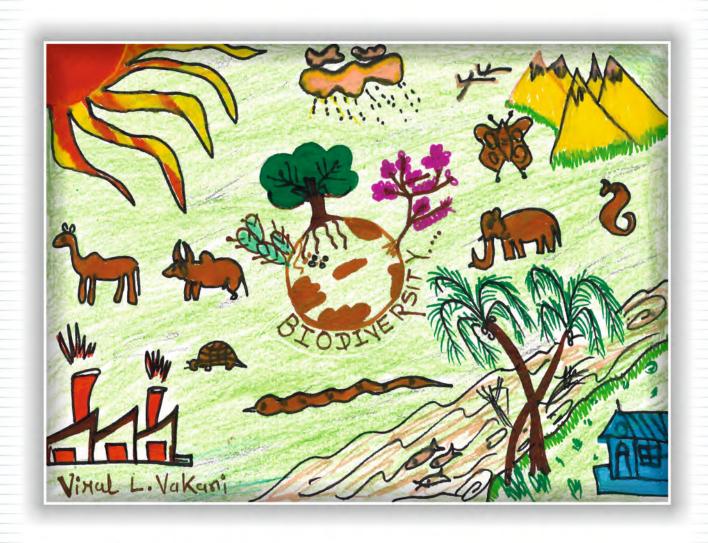
J. Org. Chem., 85 (2020) 15287-15304.


सौम्य परिस्थितियों में पुन: प्रयोज्य उत्प्रेरक के रूप में Cu-MnO का उपयोग करके अमाइड और अमाइन के साथ एरेन्स और हेटेरोएरेन्स का C-H एमाइडेशन और एमाइनेशन C-H amidation and amination of arenes and heteroarenes with amide and amine using Cu-MnO as a reusable catalyst under mild condition

कार्बनिक अणुओं में एमाइड अंश का समावेश कार्बनिक संश्लेषण में सबसे महत्वपूर्ण परिवर्तनों में से एक है। एमाइड प्रकार्यात्मक समूह प्राकृतिक उत्पादों, पॉलिमर और फार्मास्यूटिकल्स में सर्वव्यापी है। यह बताया गया है कि ज्ञात व्यावसायिक दवा के लगभग 25% में एक एमाइड समूह होता है। इस प्रकार, एरोमैटिक्स के एमिडेशन के अत्यधिक कृशल, The incorporation of an amide moiety in organic molecules is one of the most important transformations in organic synthesis. The amide functional group is ubiquitous in natural products, polymers, and pharmaceuticals. It was reported that about 25% of the known commercial drug contains

सीएसआईआर-सीएसएमसीआरआई CSIR-CSMCRI

परमाण् मितव्ययी और हरित परिस्थितियों की खोज पर केंद्रित विकास के तरीकों ने ध्यान आकर्षित किया है। इसमें हमने हमारे संश्लेषित पनचक्रणीय विषमांगी Cu-MnO उत्प्रेरक का उपयोग करते हुए, एराइल C-H बांडों के प्रत्यक्ष एमिडेशन एवं एमिनेशन के लिए एक परमाण्-मितव्ययी और कुशल मार्ग का विवरण दिया है। प्रत्यक्ष C-H एमिडेशन सरल एमाइड का उपयोग करके किया गया था, बिना किसी पूर्व-सक्रिय युग्मन भागीदार के और साधारण हवा को एकमात्र उपचयनकारक के रूप में उपयोग करते हुए। अभिक्रिया बहुत अच्छे से उत्कृष्ट यील्ड के साथ कई प्रकार्यात्मक समूहों वाले सब्सट्रेट्स की एक विस्तृत श्रृंखला के साथ बहुत आसानी से आगे बढ़ती है। द्वितीयक अमीन के साथ प्रत्यक्ष C-H एमिनेशन क्षार, लिगैंड और बाहरी ऑक्सीडेंट-मूक्त परिस्थितियों में बहुत ही सौम्य परिस्थितियों में बहुत अच्छे से उत्कृष्ट यील्ड के साथ किया गया। एमिडेशन और एमिनेशन दोनों को समान यील्ड के साथ ग्राम पैमाने तक बढ़ाया जा सकता है। प्रमुख लाभ यह है कि हमारे उत्प्रेरक का पुन: उपयोग किया जा सकता है और अभिक्रियाशीलता में किसी भी महत्वपूर्ण नुकसान के बिना कई बार पुन: उपयोग किया जा सकता है।


an amide group. Thus, the development of methods for the amidation of aromatics has received huge attention focusing on the discovery of highly efficient, atom economical, and green conditions. Herein we reported an atom-economical and efficient route for the direct amidation and amination of aryl C-H bonds, using our synthesized recyclable heterogeneous Cu-MnO catalyst. The direct C-H amidation was carried out using simple amide, without any pre-activated coupling partner and simple air is used as the sole oxidant. The reaction proceeds very smoothly with a broad range of substrates containing numerous functional groups in very good to excellent yields. Direct C-H aminations with secondary amine were carried out under base, ligand, and external oxidant-free conditions in very good to excellent yields in very mild conditions. Both the amidation and amination can be scaled up on a gram scale with similar yields. The major advantage is that our catalyst is recyclable and reused several times without any significant loss of reactivity.

चित्र: एरेन्स और हेट्रोएरेनेस का C-H एमिडेशन और एमिनेशन।

Figure: C-H amidation and amination of arenes and heteroarenes.

J. Org. Chem., 86 (2021) 3261-3275

Painting by...

श्री विरल एल वकानी, वरिष्ठ तकनीशियन Mr. Viral L Vakani, Sr. Technician

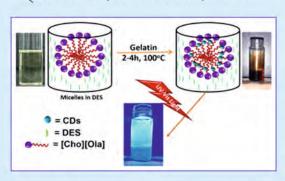
पदार्थ विज्ञान

Materials

"पदार्थ" कई अनुप्रयोगों का मुख्य घटक है, जो उत्प्रेरण, ऊर्जा भंडारण, संवेदन, पृथक्करण, कोटिंग, समग्र आदि पर केंद्रित है। वास्तविक जीवन के अनुप्रयोगों पर उनके वृहत्तर प्रभाव के कारण, स्थापित प्रक्रियाओं के साथ-साथ उभरती प्रौद्योगिकियों के लिए नई और कार्यात्मक सामग्री का निरंतर विकास किया जा रहा है। सीएसआईआर-सीएसएमसीआरआई ने इस अत्यधिक अनुप्रयुक्त और मिश्रित शोध विषय "पदार्थ" में एक दृढ़ लक्ष तय किया है और प्रवीणता प्राप्त की है। विभिन्न उद्योगों के लिए क्ले, जिओलाइट्स, धातु ऑक्साइड, हाइड्रोटेलसाइट, कार्बन, कार्बनिक ढांचे (एमओएफ और सीओएफ), प्रकार्यात्मकृत अकार्बनिक धातु कॉम्प्लेक्स और नैनो-पदार्थों के व्यापक आयाम पर व्यावहारिक और सतत अनुप्रयोगों पर समझ हासिल करने के लिए भारी योगदान दिया है। समय की आवश्यकताओं के अनुरूप, इस संस्थान के विभिन्न प्रभागों के वैज्ञानिक और शोधार्थी सीएसआईआर के अंदर और बाहर राष्ट्रीय प्रयोगशालाओं, शैक्षणिक संस्थानों और उद्योगों के साथ उपरोक्त सामग्रियों पर सहयोगात्मक शोध भी कर रहे हैं तािक समाज के सामने आने वाली बड़ी चुनौती का समाधान किया जा सके। संस्थान के प्रयास प्रौद्योगिकी। प्रक्रिया। उत्पाद विकास, राष्ट्रीय और अंतराष्ट्रीय स्तर पर प्रतिष्ठित पत्रिकाओं में गुणवत्ता प्रकाशन और विभिन्न सामाजिक गतिविधियों द्वारा भली प्रकार से संतुलित है। उन प्रक्रियाओं में कुछ के बौद्धिक संपदा अधिकार संरक्षित है एवं कुछ को विभिन्न उद्योगों। लाइसेंसधारियों को स्थानांतरित किया गया है। अत्याधुनिक संक्षेषण और लक्षण वर्णन तकनीकों से लैस होने के कारण, सीएसआईआर-सीएसएमसीआरआई पदार्थ विज्ञान पर शोध के लिए एक उपयुक्त स्थान है। निम्नलिखित में, "पदार्थ" विषय पर कुछ विशेषताओं का वर्णन किया गया है जो वर्ष 2020-21 के दौरान किए गए थे।

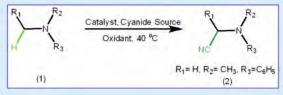
"Materials" is the core component of a multitude of applications, focused on catalysis, energy storage, sensing, separation, coating, composite, etcetera. Owing to their greater impact on real-life applications, continuous development of new and functional materials for the established processes as well as for the emerging technologies is being pursued. CSIR-CSMCRI has established a strong pursuit and proven proficiency in this highly applied and assorted research theme "Materials". The enormous contributions have been devoted to gain comprehension in the broad spectrum of materials including clays, zeolites, metal oxides, hydrotalcite, carbons, organic frameworks (MOFs & COFs), functionalized inorganic metal complexes and nano-materials for practical and sustainable applications in various industries. As the need of the hour, the scientists and research scholars from various divisions of this institute are also conducting collaborative research on the aforementioned materials with national laboratories both inside and outside CSIR, academic institutions, and industries to address the major challenge faced by the society. The Institute's output is well balanced by technology/ process/ product developments, quality publications in both national and internationally reputed journals, and various societal activities. The IP rights protect some of those processes and a few of those are transferred to various industries/licensees. Being equipped with state-of-the-

art-synthetic and characterization techniques, CSIR-CSMCRI is an appropriate place for carrying out the material researchs. In the following, some highlights on the theme "Materials" are described that were carried out during the year 2020–21.


कक्ष – ताप आयनिक-द्रवों का अध्ययन Studies on room temperature ionic liquids

- चुंबकीय प्रोलीन—आधारित सतह-सक्रिय आयनिक द्रव ([ProC₁₀][FeCl₃Br]) का संश्लेषण किया गया तथा हाइड्रोफोबिक ड्रग वितरण में इसका परिक्षण किया गया। पारंपरिक हाइड्रोफ़ोबिक ड्रग निम्न अवशोषण, ड्रग एकत्रीकरण एवं उच्च स्थानीय विषाक्तता का कारण बनती हैं। ([ProC₁₀][FeCl₃Br]) से तैयार किए गए पुटिकाओं की जांच हाइड्रोफ़ोबिक मॉडल ड्रग के रूप में अतिथि-अणु पाइरीन की *इन-विट्रो* ड्रग वितरण और हाइड्रोफ़ोबिक एंटीबायोटिक ड्रग के रूप में सिप्रोफ्लोक्सीन के लिए की गई। अनेक सैद्धांतिक गणितीय ड्रग रिलीज मॉडल का उपयोग करके ड्रग की लोडिंग क्षमता एवं ड्रग के सहज काइनेटिक रिलीज का अध्ययन किया गया।
- •धातु-आधारित सतह-सिक्रय आयिनक द्रव (MSAILs), 1-एल्काइल-3-मिथाइलिमिडेज़ोलिम टेट्राक्लोरोमेंगनेट Cnmim]MnCI4]²- (n= 8,10,12) का संश्लेषण किया गया एवं जलीय विलयन में स्व-संयोजन व्यवहार के लिए परिक्षण किया गया। MSAILs माइसेलर विलयन का तृतीयक एमीन के C(sp³)-H प्रकार्यात्मकृत ऑक्सीडेटिव सायनीकरण के लिए सफलतापूर्वक उपयोग किया गया। MSAILs, साइनाइड स्त्रोत (TMSCN) और सब्सट्रेट के विभिन्न सांद्रता के साथ ऑक्सीडेटिव स्ट्रेकर अभिक्रिया की गई एवं 3-4 घंटों में मध्यम से अत्यधिक उत्पादकता (95% तक) प्राप्त की गई।
- हमने सूक्ष्मपायस (MEs) का निर्माण किया जिसमें एक आयनिक द्रव (IL) आधारित पृष्टसक्रियकारक यानि कोलिन डाईऑक्टाइल-सल्फोसक्सीनेट, [Cho][AOT] का पायसीकारक के रूप में, टालूईन का एक गैर-ध्रुवीय अवस्था के रूप में एवं जल का ध्रुवीय अवस्था के रूप में प्रयोग किया गया। यह प्रणाली प्रावस्था-आरेख में बिना

- Magnetic proline-based surface-active ionic ([ProC₁₀][FeCl₃Br]) have synthesized and investigated for application in hydrophobic drug delivery. Conventional hydrophobic drugs lead to poor absorptivity, drug aggregation and high local toxicity. The engendered vesicles prepared from [ProC10][FeCl3Br] have been investigated for the in-vitro drug delivery of guest molecule pyrene as a hydrophobic model drug and ciprofloxacin as a hydrophobic antibiotic drug. The drug loading capacity and spontaneous kinetic release of the drug have been studied using various theoretical mathematical drug release models.
- Metal-based surface active ionic liquids (MSAILs), 1-alkyl-3-methylimidazolium tetrachloromanganate [Cnmim]MnCl₄]²⁻ (n= 8,10,12) have been synthesized and characterized for self-assembling behavior in aqueous solution. MSAILs micellar solutions have been successfully used for C(sp3)-H functionalized oxidative cyanation of the tertiary amines. Oxidative Strecker reaction carried out with different was concentrations of the MSAILs, cyanide source (TMSCN) substrate and moderate to very high yields (up to 95%) could be achieved in 3-4 h.
- We have constructed microemulsions (MEs) consisting of an Ionic Liquid (IL) based surfactant i.e. choline dioctylsulfosuccinate, [Cho][AOT] as an emulsifier, toluene as a nonpolar phase and water as a polar phase.


किसी सह- पृष्टसक्रियकारक के एक बड़ा एकल-चरण क्षेत्र प्रस्तुत करता है। ME बूदें अर्थात रिवर्स-माइसेल (RMs) में गोलाकार कोर /शेल QDs (आकार B3 से B6 nm) का आकार व आकारिकी पर सटीक नियंत्रण के साथ सफलता-पूर्वक संश्लेषण किया गया।

- अनुचुम्बकीय आयनिक द्रव (PMILs), जिसमें प्राकृतिक अमीनो अम्ल और टेट्राक्लोरोफेरेट (III) घटक आयन के रूप में शामिल है, तैयार किए गए जो चुम्बकीय अनुनाद प्रतिबिंबन (MRI) के लिए अत्यधिक कुशल द्विरीति अनुक्रियाशील एजेंटो के रूप में कार्य करते हैं। संश्लेषित PMILs पर्यावरण के अनुकूल, जैवअपघटनीय, मूल्य-प्रभावी, संश्लेषण में सरल, कोशिका कार्यिकीय pH (7.4) पर स्थिर, जैव डीएनए के लिए जोखिम रहित हैं, और इसलिए भविष्य में नैदानिक उपयोगों के लिए दावेदार हैं।
- •डीप यूटेक्टिक विलायक (DES: कॉलिन क्लोराइड एथिलीन ग्लाइकोल) में कॉलिन ओलेट से युक्त एक नवीन कोलोइडल प्रणाली विकसित की गई और इसका उपयोग नैनो-आकार (1 से 3 nm) N-डोप्डऑक्सीजीनेटेड, जिलेटिन के विघटन के द्वारा क्रिस्टलीय CDs के तद्स्थानें उत्पादन एवं स्थरीकरण के लिए किया गया।

The system forms a large single-phase region in the phase diagram without any cosurfactant. In ME droplets, i.e. Reverse Micelles (RMs), have been successfully synthesized with spherical core/shell QDs (size B3 to B6 nm) with precise control over the size and morphology.

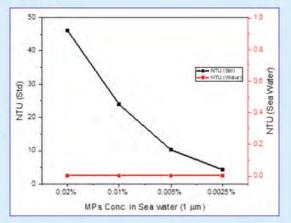
- Paramagnetic ionic liquids (PMILs) comprising of natural amino acids and tetrachloroferrate (III) as constituent ions were prepared that act as highly efficient dual-mode responsive contrast agents for magnetic resonance imaging (MRI). The **PMILs** synthesized herein environmentally friendly, biodegradable, cost-effective, easy to synthesize, stable at cell physiological pH (7.4), non-hazardous to animal DNA, and hence hold promise for future clinical use.
- •A Novel colloidal system comprising of choline oleate in deep eutectic solvent (DES: choline chloride-ethylene glycol) is developed and utilized for in situ generation and stabilization of nanosized (1 to 3 nm) N-doped oxygenated, crystalline CDs via dissolution of gelatin.

चित्र: (बाएं) जिलेटिन का [Cho][Ola] – DES कोलोइडल विलयन में विघटन का योजनाबद्ध प्रदर्शन (दाएं) तृतीयक एमीनों का माइसेलर विलयन में सायनीकरण।

Figure: (Left) Schematic representation of dissolution of gelatin in [Cho][Ola] - DES colloidal solution; (Right) Cynation of tertiary amines in micellar solutions.

J. Mater. Chem. B, 2020, 8, 3050-3057 Journal of Molecular Liquids 299 (2020) 112157 Phys. Chem. Chem. Phys., 2020, 22, 8157-8163 Mater. Adv., 2020, 1, 1980-1987

विभिन्न जल संसाधनों से माइक्रोप्लास्टिक के निष्कर्षण के लिए फेराइट आधारित पॉलीऑक्सोमेटालेट-एमाइन ट्राइकम्पोजिट्स

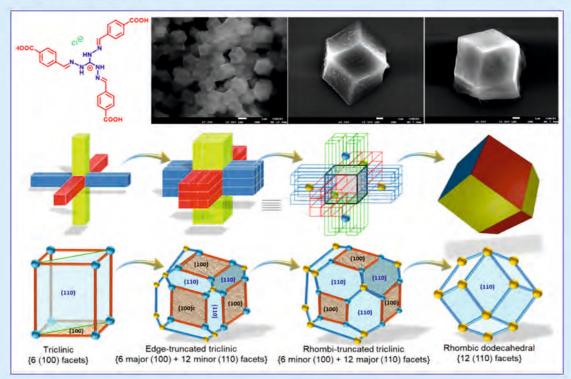

Ferrite based polyoxometalate-amine tricomposites for extraction of microplastics from the various water resources

माइक्रोप्लास्टिक्स (एमपी) विभिन्न उत्पादों में मौजूद होते हैं और समय के साथ प्लास्टिक के अपघटित होने के कारण इसमें काफी वृद्धि हुई छोटा आकार (<5 मिमी) और उच्च तन्ता इसके संग्रह और पुन: उपयोग को कठिन बनाता है, जिसके परिणामस्वरूप दुनिया भर में महासागरों, पीने के पानी और नमक में इसका संचय हो रहा है। इसलिए समुद्री ब्राइन और नल के पानी जैसे विभिन्न जल संसाधनों से एमपीस् को निकालने पर ध्यान केंद्रित करते हुए, चुंबकीय रूप से पुनर्प्राप्य पॉलीऑक्सोमेटलेट आयनिक लवण को संश्लेषित करने के व्यापक उद्देश्य के तहत, पानी से एमपीस् के निष्कर्षण के लिए इनका अनुकूलन किया गया। समुद्री जल और नल के पानी से कुशलतापूर्वक Fe3O4-पी.डब्ल्यू.ए./ n-ऑक्टाइलएमीन ट्राईकम्पोजिट के उपयोग से 0.01 से 0.002% विलयन में से पॉलीस्टाइनिन (1 माइक्रोन) के 99% से अधिक निष्कर्षण के द्वारा अपेक्षित परिणाम प्राप्त हुए। कण आकार और टर्बिडिटी मापन द्वारा प्राप्त अर्क का विश्लेषण किया गया। 0.1 ग्राम सामग्री का उपयोग करके नल के पानी से 83% दक्षता के साथ 0.1% विलयन से पॉलीसल्फोन का भी निष्कर्षण किया गया।

Microplastics (MPs) are present in various products and have increased abundantly since plastic degrades over time. Small size (<5 mm) and high dilution hardens its collection and reuse, which results in its accumulation in the oceans, drinking water and salt around the globe. So focused on extracting the MPs from various water resources like sea brine and tap water, under the broad objective synthesize magnetically retrievable polyoxometalate ionic salts, their optimization for extraction of MPs from water has been carried out. The expected outcomes were fulfilled with more than 99% extraction of polystyrene (1 micron) from 0.01 to 0.002% solution by use of Fe₃O₄-PWA/ n-Octylamine tricomposite efficiently from seawater and tap water. The extract was analyzed by measuring particle size and turbidity. Polysulphone was also extracted from 0.1% solution with 83% efficiency from the tap water using 0.1 g of material.

चित्र: Fe₃O₄-PWA-nOct के निष्कर्षण के उपरांत समुद्री ब्राइन का टर्बिडिटीमीटर द्वारा परीक्षण

Figure: Analysis of sea brine using turbidimeter after removal of Fe₃O₄-PWA-nOct.



रॉम्बिक डोडेकाहेड्रल में C3-सिमेट्रिक ट्राईएमिनोगुआनिडियम-व्युत्पन्न का पार्श्व चयनात्मक स्व-संयोजन

Facet selective self-assembly of C3-symmetric triaminoguanidium-derivative into rhombic dodecahedral

विशुद्ध रूप से जैविक प्रणालियों के लिए, रोम्बिक डोडेकाहेड्रल (आरडी) आकार के साथ नैनोक्रिस्टल उत्पादन असामान्य है। इससे भी महत्वपूर्ण बात यह है कि आकार-नियंत्रित नैनोस्ट्रक्चर के गठन मार्ग को समझने के लिए अंतर्दृष्टि विकसित करना काफी कठिन काम है। इस रिपोर्ट में, हमने एक छोटे कार्बनिक अणु के स्व-संयोजन के माध्यम से 23.7 माइक्रोन तक के आकार के साथ क्रिस्टलीय आरडी आकारिकी उत्पन्न करने के लिए एकत्रीकरण के पथ को नियंत्रित करने के साथ-साथ स्व-

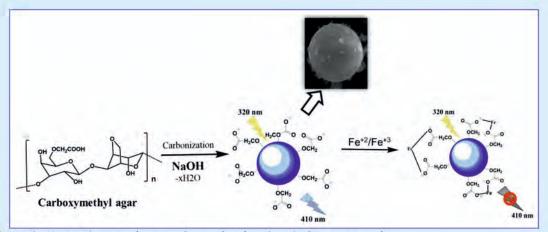
For purely organic systems, nanocrystal production with rhombic dodecahedral (RD) shape is rather unusual. More importantly, developing insight for understanding the formation pathway of a shape-controlled nanostructure is quite a daunting task. In this report, we have discussed a crystallographic insight to control the path of assembly formation as well as to explicate the self-assembly mechanism for generating crystalline RD morphology with a size up to

चित्र: आरडी आकृति विज्ञान की एसईएम छवि के साथ आणविक संरचना का योजनाबद्ध चित्रण। स्व-संयोजन के माध्यम से एक ट्राइक्लिनिक क्रिस्टल (टीसी) आकार से आरडी आकार का निर्माण।

Figure: Schematic illustration of molecular structure along with SEM image of RD morphology. Built-up of RD shape from a triclinic crystal (TC) shape through self-assembly.

संयोजन तंत्र की खोज करने के लिए एक क्रिस्टलोग्राफिक अंतर्दृष्टि पर चर्चा की है। एक युक्तिसंगत दृष्टिकोण प्रदान करने के लिए अलग-अलग विलायक रचनाओं और ध्रवीयताओं के साथ विभिन्न विलायकों में विकास तंत्र का पता लगाया गया। विभिन्न क्रिस्टल पहलुओं और विकास दिशाओं में विलायक अणुओं के अधिमान्य अधिभोग के संदर्भ में स्व-संयोजन मार्ग का विस्तार होता है। सिंगल क्रिस्टल एक्स-रे विवर्तन विश्लेषण (110) क्रिस्टल फैसेट ओवर (100) में विलायक अणुओं के अधिमान्य अधिभोग के संदर्भ में गठन तंत्र को उजागर करता है, रोम्बिक डोडेकेड्रल आकारिकी को प्राप्त करने के लिए विकास की दिशा का पक्षधर है। इस तरह के समचतुर्भुज डोडेकेडुल आकारिकी के गठन तंत्र को समझने के लिए क्रिस्टलोग्राफिक साक्ष्य छोटे कार्बनिक अणुओं की स्व-संयोजन प्रणाली में अब तक नहीं देखा गया है। हम दृढ़ता से मानते हैं कि वर्तमान खोज विशिष्ट अनुप्रयोग के लिए स्वयं-संयोजन के माध्यम से क्रिस्टलीय नैनोस्ट्रक्चर सामग्री का उत्पादन करने के लिए अधिक कार्बनिक अणुओं को डिजाइन करने में सहायक होंगी।

23.7 µm through self-assembly of a small organic molecule. The growth mechanism is explored in different solvents with varying solvent compositions and polarities for providing a rationalized approach. The selfassembly pathway expounds in terms of preferential occupancy of the solvent molecules in different crystal facets and growth directions. Single crystal X-ray diffraction analysis expounds the formation mechanism in terms of preferential occupancy of the solvent molecules in (100) crystal facet over (100), favors the growth direction for achieving the rhombic dodecahedral morphology. The crystallographic evidence for understanding the formation mechanism of such rhombic dodecahedral morphology is not witnessed hitherto in the self-assembly system of small organic molecules. We strongly believe that the present finding will favor designing more organic molecules to produce crystalline nanostructured materials through self-assembly for the specific application.


Cryst. Eng. Comm, 22 (2020) 5117

लौह संवेदन के लिए समुद्री शैवाल बहुलक आधारित नीलवर्ण-उत्सर्जक सी-डॉट्स का विकास

Development of seaweed polymer-based blue-emitting C-dots for iron sensing

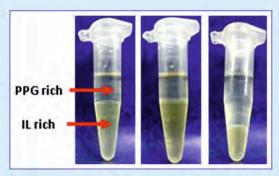
हॉल के दिनों में कार्बन डॉट्स (सी-डॉट्स) के संक्षेषण के लिए हरित और किफायती प्रक्रियाओं के साथ-साथ खोतों की मांग रही है। यह अध्ययन नीलवर्ण प्रतिदीप्त सी-डॉट्स के संक्षेषण के लिए समुद्री शैवाल-व्युत्पन्न पॉलीसेकेराइड को, स्मार्ट उपयोग हेतु, एक हरित प्रीकर्सर के रूप में प्रदर्शित करता है। इस अध्ययन में निर्मित सी-डॉट का अनेक तकनीकों द्वारा लक्षण-वर्णन किया गया। परिणामों द्वारा पृष्टि हुई कि तैयार सी-डॉट्स एक 100 nm आकार के क्लस्टर से बना है जिसमें 5-10 nm आकार के अनेकों कण मौजूद है। तैयार किए गए सी-डॉट्स 12% के अच्छे क्वांटम यील्ड के साथ नीलवर्ण फोटोल्यूमिनेसेंस उत्सर्जित करते हैं।

In recent times, green and economical processes as well as sources have been in demand for the synthesis of carbon dots (C-dots). This study demonstrates the smart utilization of seaweed-derived polysaccharide as a green precursor for the synthesis of blue-emitting fluorescent C-dots. C-dots prepared in this study were characterized using various techniques. The results confirmed that the prepared C-dots have a cluster size of 100 nm with particle sizes in the range of 5–10 nm. Prepared C-dots emit blue photoluminescence with a good quantum yield of ca. 12%.

चित्र: सी-डॉट्स संश्लेषण का योजनाबद्ध चित्रण और लौह संवेदन के लिए उनका उपयोग।

Figure: Schematic representation of C-dots synthesis & their use for iron sensing.

लौह आयनों वाले जलीय घोल में सी-डॉट्स की प्रतिदीप्ति में एक प्रबल शमन देखा गया। ये सी-डॉट्स का उपयोग पानी के नमूने में 0.025 से 30 पीपीएम तक लौह निर्धारण में हो सकता है। इस कार्य के परिणाम हमें प्रचुर मात्रा में उपलब्ध समुद्री शैवाल-व्युत्पन्न पॉलीसेकेराइड, जिनका अन्यथा कोई अन्य व्यावसायिक मूल्य नहीं है, का उपयोग जलीय विलयन में लौह आयन के चयनात्मक संवेदन के लिए फ्लोरोसेंट, पानी में घुलनशील और जैव-संगत नैनोकार्बन के सतत उत्पादन के लिए हरित स्रोत के रूप में करने के लिए प्रोत्साहित करते हैं।


A strong fluorescence quenching of C-dots has been observed in the aqueous solution containing iron ions. These C-dots are suitable for determining iron in water samples in the range 0.025 to 30 ppm. Results of this work encourage us to use abundantly available seaweed-derived polysaccharides, having no other commercial value, as green sources for the sustainable production of fluorescent, water-soluble and biocompatible nanocarbon for selective sensing of ionic iron in aqueous solutions.

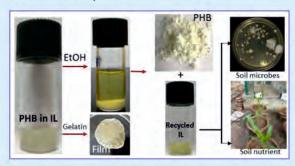
Polymer International 70 (2021) 1309-1315

ब्रोथ कल्चर में मौजूद ε-पॉलीलाइसीन का चयनात्मक पृथक्करण One step selective partition of ε-polylysine present in broth cultures

चार विभिन्न प्रकार के आयनिक तरलों का संश्लेषण, लक्षण-वर्णन और पॉलीप्रोपाइलीन ग्लाइकोल के साथ जलीय द्विध्रुवीय प्रणालियों के निर्माण के लिए तथा इसके बाद ब्रोथ कल्चर से ६-पॉलीइसीन (एक प्रकार का पेप्टाइड) के चयनात्मक पृथक्करण में उपयोग किया गया। पॉलीपेप्टाइड का पृथक्करण उत्कृष्ट निष्कर्षण दक्षता के साथ प्राप्त हुआ। Four different ionic liquids were synthesized, characterized and used with polypropylene glycol for the formation of aqueous biphasic systems followed by selective separation of ε-polylysine (a type of peptide) from the culture broth. It was observed that the partition of the polypeptide was achieved with excellent extraction efficiency.

चित्र: कल्चर ब्रोथ में मौजूद पॉलीपेप्टाइड का पृथक्करण Figure: Separation of polypeptide present in broth.

Separation Science & Technology. 56(2021) 631-639

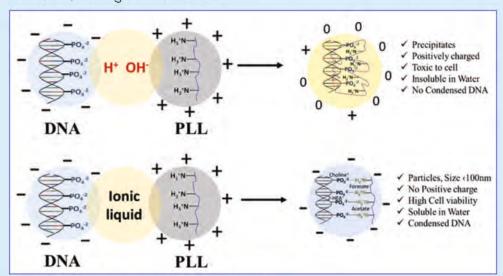

पॉली- [(R) -3-हाइड्रॉक्सीब्यूटरेट] के विघटन और फिल्म निर्माण के लिए सतत माध्यम के रूप में नई विलायक पद्धति

New solvent systems as sustainable media for dissolution and film preparation of poly-[(R)-3-hydroxybutyrate]

पॉलीहाइड्रोक्सीएल्केनोएट्स (PHAs) में उनके जैव-अपघटनीयता और जैव-संगत विशेषताओं के कारण प्रयोज्यता की एक विस्तृत श्रेणी है। यह उन्हें पेट्रोलियम आधारित संश्विष्ठ प्लास्टिक के विकल्प के रूप में व्यावसायीकरण के लिए उपयुक्त बनाता है। क्लोरोफॉर्म जैसे विलायको को पॉलीहाइड्रोक्सीएल्केनोएट्स को घोलने के लिए सूचित किया गया है। चूंकि क्लोरोफॉर्म स्वास्थ्य और पर्यावरण दोनों के लिए खतरनाक है, इसलिए यह कार्य इस क्लोरीनयुक्त विलायक को आयनिक तरल जैसे हरित विलायकों से बदलने का प्रयास करता है। इस अध्ययन में, हेलोमोनास हाइड्रोथर्मिलस से पॉली- [(R) -3-हाइड्रॉक्सीब्यूटरेट] (पीएचबी) को निष्कर्षित किया गया, और अमोनियम-आधारित आयनिक तरल पदार्थों की उपस्थिति में इसकी घुलनशीलता, स्थिरता और फिल्म बनाने की क्षमता की जांच की गई।

चित्र: पीएचबी का आयनिक द्रवों में विलयनता। Figure: Solubilisation of PHB in ionic liquids.

Polyhydroxyalkanoates (PHAs) have a wide of applicability due to biodegradable and biocompatible characteristics. This makes them suitable for commercialization as an alternative to petroleum-based synthetic plastics. Solvents such as chloroform are reported to solubilize polyhydroxyalkanoates. Since chloroform is hazardous for both health and the environment, this work attempts to replace this chlorinated solvent with green solvents like ionic liquids. In this study, poly-[(R)-3hydroxybutyrate] (PHB) was extracted from Halomonas hydrothermalis, and its solubility, stability, and film-forming ability were investigated in the presence of ammoniumbased ionic liquids.


ACS Sustainable Chem. Eng. 8(2020) 12005-12013

गैर-कोशिकाविषी रक्त-अनुकूल स्थिर डीएनए- ६-पॉली-L-लाइसिन पॉलीप्लेक्सों का आयनिक तरल-मध्यस्थ निर्माण

Ionic liquid-mediated preparation of noncytotoxic hemocompatible stable DNA-εpoly-L-lysine polyplexes

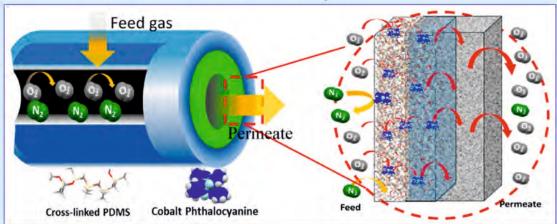
गैर-वायरल वैक्टर जीन वितरण प्रणाली के रूप में महत्व प्राप्त कर रहे हैं। हालांकि, बड़े पैमाने पर अनुप्रयोगों को पूरा करने के लिए, उनका सतत उत्पादन अत्यंत महत्वपूर्ण है। इसलिए, उनके व्यापक स्तर पर उत्पादन के लिए लागत प्रभावी और एकल-पॉट प्रक्रिया वांछनीय है। यहाँ जीन वितरण अनुप्रयोगों की क्षमता वाले, गैर-वायरल जीन वैक्टर के स्गम उत्पादन के लिए एक सतत विधि, e-पॉली-L-लाइसिन और डीएनए और आयनिक तरल पदार्थ का उपयोग करके विकसित की गयी। इस प्रकार तैयार किए गए रक्त-अनुकुल नैनोआकार ऋणावेशित पॉलीप्लेक्स जलीय मीडिया में स्थिर और मानव हेला (HeLa) कोशिकाओं के खिलाफ गैर-कोशिकाविषी पाए गए। विकसित विधि कोई उपउत्पाद नहीं पैदा करती है और इसलिए, अधिकतम परमाणु मितव्ययी है, जो व्यापक स्तर पर उत्पादन के लिए विचार करते समय आवश्यक है। साथ ही विकसित प्रक्रिया एक एकल चरण प्रक्रिया है और कमरे के तापमान पर सुविधाजनक है, जो इसे ऊर्जा कुशल और लागत प्रभावी

Nonviral vectors are gaining importance as gene delivery systems. However, to meet the large-scale applications, their sustainable production is of utmost importance. Hence, a cost-effective and one-pot strategy for their bulk production is desirable. Herein, a sustainable method for the facile production of nonviral gene vectors, using ε-poly-L-lysine and DNA, having the potential for gene delivery applications has been developed using ionic liquids. The hemocompatible nanosized negatively charged polyplexes thus prepared were stable in aqueous media and were found to be noncytotoxic against human HeLa cells. The method developed produces no byproducts and hence, has maximum atom economy, which is essential while considering it for bulk production. Further, the process is a single step process and facilitated at room temperature, which makes it energy-efficient

चित्र: आयनिक तरल मध्यस्थ डीएनए-पॉली लाइसिन पॉलीप्लेक्स की रचना।

Figure: Ionic liquid mediated DNA-Poly Lysine Polyplex formation.

बनाती है। उत्पादन की आसानी के कारण, यहां बतायी गयी पॉलीप्लेक्स के उत्पादन की विधि उन्नत जीन वितरण अनुप्रयोगों के लिए बायोपॉलीमर-आधारित गैर-वायरल वैक्टर के व्यापक स्तर पर उत्पादन को बढावा दे सकती है। and cost-effective. Because of the ease of production, the method for the production of polyplexes reported herein may promote the bulk production of biopolymer-based nonviral vectors for advanced gene delivery applications.


ACS Sustainable Chem. Eng. 9(2021) 264-272

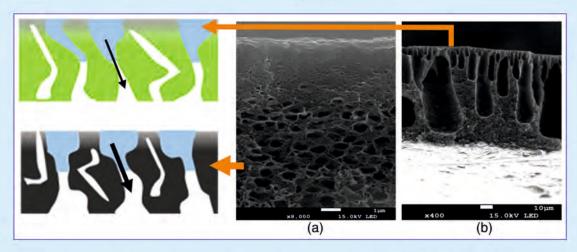
अत्यधिक चयनात्मक, उत्क्रमणीय और जैव-प्रेरित ऑक्सीजन परिवहन के लिए सहसंयोजी रूप से स्थिर कोबाल्ट कॉम्पलेक्स @ हॉलो फाइबर झिल्ली

Covalently immobilized cobalt complex @ hollow fiber membrane for highly selective, reversible, and bio-inspired oxygen transport

सुगम ऑक्सीजन परिवहन, ऑक्सीजन परिवहन के लिए एक प्रभावी रणनीति है जो ऑक्सीजन की पारगम्यता और इसकी चयनात्मकता को बढ़ा सकती है। प्रक्रिया ऑक्सीजन से भरपूर पर्मीएट प्रदान कर सकती है जिसका उपयोग रोगियों को पर्याप्त ऑक्सीजन प्रदान करने के लिए चिकित्सा अनुप्रयोगों में किया जा सकता है। यह अध्ययन अक्षीय लिगैंड के माध्यम से, 0.05, 0.1, 0.5, और 1.0 wt% लोडिंग के साथ पीडिएमएस हॉलो फाइबर झिल्ली में समाविष्ट बहु-दीवार कार्बन नैनोट्यूब (MWCNT) के सहारे सहसंयोजी आबंधित कोबाल्ट थैलोसाइनाइड कॉम्लपलैक्स द्वारा जैव-प्रेरित ऑक्सीजन परिवहन प्रस्तृत करता है।

Facilitated oxygen transport is an effective strategy that may enhance oxygen permeance and its selectivity. The procedure may provide oxygen-rich permeate that can be used in medical applications for providing sufficient oxygen to the patients. This study presents the bio-inspired oxygen transport by covalently bonded Cobalt Phthalocyanine complex anchored on multi-walled carbon nanotube (MWCNT) via axial incorporated **PDMS** hollow in membranes with 0.05, 0.1, 0.5, and 1.0 wt % loadings.

चित्र: हॉलो फाइबर झिल्ली के माध्यम से वायु पृथक्करण की एक योजनाबद्ध प्रस्तुति।


Figure: A schematic representation of air separation through hollow fiber membrane.

Journal of Membrane Science 624 (2021) 119119

तर्किक रूप से डिज़ाइन की गयी ऑर्गेनोसिलिका-पीवीडीएफ नैनोकम्पोजिट झिल्ली Rationally designed organosilica-PVDF nanocomposite membrane

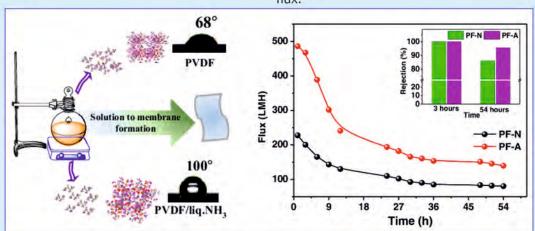
ऑर्गनोसिलिका-पॉलीविनाइलिडिनफ्लोराइड नैनोकम्पोजिट मेम्ब्रेन ने अत्यधिक खारे पानी के स्रोतों के उपचार के लिए मेम्ब्रेन आसवन (डिस्टिलेशन) प्रक्रिया की उभरती हुई तकनीकों में उत्कृष्ट प्रदर्शन किया है। वर्तमान कार्य में, पारगामी छिद्रों के संकुचित भाग, जो नैनोकम्पोजिट झिल्ली के सक्रिय छिद्र होते है, का मूल्यांकन करने के लिए केशिका प्रवाह पोरोमेट्री का उपयोग करके एक व्यवस्थित अध्ययन किया गया। औसत प्रवाह छिद्र आकार और झिल्ली में छिद्रों का वितरण कई कारकों द्वारा प्रभावित होता है। इसमें स्कंदन बाथ में आप्लावन से पहले हवा के संपर्क में सूक्ष्म-जेलिकरण, बहुलक सांद्रता, बहुलक श्रृंखला की लंबाई, और कास्टिंग डोप विलयन में विलायक की प्रकृति शामिल है। पारगामी छिद्रों के संकीर्ण वितरण के साथ 0.12 µm के सबसे बड़े औसत प्रवाह छिद्र व्यास के संदर्भ में सबसे अच्छी झिल्ली 1.4 wt% की अनुकूलतम ऑगॉसिलिका मात्रा वाली झिल्ली में प्राप्त हुई।

Organosilica-polyvinylidenefluoride nanocomposite membrane shown excellent performance in the emerging membrane distillation technologies treating highly saline water streams. In the present work, a systematic study using capillary flow porometry was carried out to evaluate the constricted part of the flowthrough pores, which are active pores of the nanocomposite membranes. Mean flow pore size and distributions of the membrane pores were found to be influenced due to several factors. This includes the micro-gelation by air exposure prior to the immersion in the coagulation bath, polymer concentration, polymer chain length, and nature of the solvent in the casting dope solution. The best membrane in terms of the largest mean flow diameter of 0.12 μm with a narrow distribution of flow-through pores was observed in the membrane with optimum organosilica content of 1.4 wt%.

चित्र: अत्यधिक प्रवाह के माध्यम से छिद्रों (ए) और अल्ट्राफिल्ट्रेशन (बी) झिल्ली के विशिष्ट पॉलीविनाइलिङिनफ्लोराइड नैनोकम्पोजिट झिल्ली।

Figure: Typical polyvinylidenefluoride nanocomposite membrane of highly flow-through pores (a) and ultrafiltration (b) membranes.

Journal of Applied Polymer Science 138 (2021) 50133



अन्त्य झिल्ली-विशेषताओं पर प्रभाव डालने वाली पॉली (विनाइलिडीन फ्लोराइड) निर्माण इकाइयों का इन-सॉल्यूशन संरचना निर्माण

In-solution structure formation of poly (vinylidene fluoride) building units influencing on the final membrane-characteristics

विलयन में बहुलक निर्माण इकाइयों की समग्र संरचना का निरीक्षण करने के लिए असमित पीवीडीएफ अल्ट्राफिल्ट्रेशन झिल्ली के प्रारंभिक कास्टिंग विलयन पर एक व्यवस्थित अध्ययन किया गया। साथ ही सूक्ष्म संरचना आकारिकी, क्रिस्टलीयता, औसत छिद्र आकार, छिद्र-आकार वितरण, कुल सरंध्रता, हाइड्रोफोबिसिटी, वेटिंग ऊर्जा, आणविक भार कट-ऑफ और पारगम्यता के संदर्भ में झिल्ली के गुणों का भी अध्ययन किया गया। उच्च प्रवाह को प्रदर्शित करने वाली उच्च रंध्रता की हाइड्रोफोबिक झिल्ली बड़ी बहुलक संरचनात्मक इकाइयों के विलयन से प्राप्त की गई, जबिक छोटी बहुलक संरचनात्मक इकाइयों के विलयन से प्राप्त की गई, जबिक छोटी बहुलक संरचनात्मक इकाइयों के विलयन से प्राप्त की साथ छोटे एकसमान छिद्रों का प्रदर्शन करती थी।

A systematic study was carried out on the initial casting solutions of asymmetric PVDF ultrafiltration membranes to observe the aggregate structure of polymer building units in solution. Besides the properties of the membranes in terms of microstructure morphology, crystallinity, average pore size, distribution, total pore-size porosity, hydrophobicity, wetting energy, molecular weight cut-off, and permeability were also studied. Hydrophobic membrane of higher porosity exhibiting higher flux was obtained from the solution of bigger polymer structural units while the membrane obtained from solution of smaller polymer structural units exhibited relatively rougher and hydrophilic surface and smaller uniform pores with lesser flux.

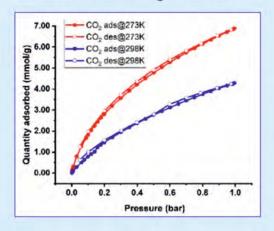

चित्र: 2.6 बार अपस्ट्रीम दाब पर झिल्लियों का दूषणरोधी प्रदर्शन एवं एल्ब्यूमिन प्रोटीन की अस्वीकृति प्रोफ़ाइल (इनसेट) का दीर्घावधि परीक्षण डाटा।

Figure: Long-term testing data of antifouling performance of the membranes and rejection profile (inset) of albumin protein at 2.6 bar upstream pressure.

Journal of Applied Polymer Science 138 (2021) 50133

कपास के डंठल वाले कृषि अवशेषों से प्राप्त रंधित कार्बन द्वारा CO₂ का अधिशोषण Adsorption of CO₂ by porous carbon obtained from cotton stalk agro residues

अन्य CO2 पृथक्करण तकनीकों की तुलना में रंध्रित कार्बन के कई फायदे हैं। कृषि अवशेष एक आशाजनक संसाधन हैं, विशेष रूप से भारतीय संदर्भ में। कपास के डंठल के फसल अवशेषों को KOH और फिटकरी का उपयोग करके रासायनिक सक्रियण के माध्यम से रंधित कार्बन तैयार करने के लिए संसाधित किया गया। उत्पादित रंध्रित कार्बन का बीईटी सतह क्षेत्रफल 2695 m²/g. प्राप्त हुआ। CO2 शोषण के लिए पोरस सामग्री विकसित करने के महत्व और अंतिम लक्ष्य को देखते हुए, पीसी के CO2 सोखने की क्षमता को दो अलग-अलग तापमानों पर, 1 बार दबाव पर परखा गया। 273 K पर CO, अधिशोषण क्षमता 6.9 mmol/g थी। समान माप स्थितियों के तहत 298 K पर अधिशोषण लगभग 4.24 mmol/a था। इस प्रकार की उच्च अधिशोषण क्षमता को रासायनिक सक्रियण के दौरान छिद्रों के विस्तार के दौरान उत्पन्न पर्याप्त चैनलों की उपस्थिति के कारण माना जा सकता है। अधिशोषित के साथ रंधित ढांचे की अंत:क्रिया पर और अधिक जानकारी प्राप्त करने के लिए. अधिशोषण के आइसोस्टेरिक ताप (Qst) की गणना 273 और 298 K पर प्राप्त आइसोथर्म से की गई। शून्य लोडिंग पर Qst मान 23.5 kJ/mol पाया गया। अन्य गैसों पर CO, के अधिशोषण के लिए चयनात्मकता (S) की गणना एकल-घटक आइसोथर्म डेटा से आदर्श अधिशोषण विलयन सिद्धांत (IAST) का उपयोग करके की गई। CO₂/N₂ चयनात्मकता 273 K पर 42 प्राप्त हुई। तापीय और

The porous carbons have several advantages over other CO2 separation techniques. Agroresidues are a promising resource, particularly in the Indian context. Cotton stalk crop residue was processed to prepare porous carbon through chemical activation using KOH and alum. The BET surface area of the produced porous carbon corresponded to 2695 m²/g. Given the significance and the ultimate goal to develop porous materials for CO2 uptake, the CO2 adsorption potential of the PC at two different temperatures, up to 1 bar pressure was tested. The CO₂ adsorption capacity at 273 K was 6.9 mmol/g. The uptake value at 298 K under similar measurement conditions approximated 4.24 mmol/g. Such high adsorption capacity could be ascribed to the presence of adequate channels generated during the expansion of pores while chemical activation. To obtain further insight on the interaction of the porous framework with the adsorbate, the isosteric heat of adsorption (Qst) was calculated from the isotherms obtained at 273 and 298 K. The Qst value at zero loading was found to be 23.5 kJ/mol. The selectivity (S) for adsorption of CO2 over other gases was calculated by using the ideal adsorbed solution theory (IAST) from the single-component isotherm data. The CO₂/N₂ selectivity was calculated to be 42 at 273K. Thermal and chemical stability, low cost, and

चित्र: 273 और 298K पर कपास के डंठल कृषि अवशेषों से तैयार पोरस कार्बन के CO₂ अधिशोषण वक्र।

Figure: CO₂ adsorption curves of porous carbons prepared from cotton stalk agroresidue at 273 & 298K.

रासायनिक स्थिरता, कम लागत, और विकसित कार्बन की उच्च अधिशोषण क्षमता उन्हें जिओलाइट और एमओएफ जैसे अन्य अधिशोषकों की तुलना में लाभप्रद बनाती है। अन्य सामग्रियों की तुलना में, आरंभिक सामग्री की प्रचूर उपलब्धता के कारण इन रंधित कार्बन का उत्पादन आसान और व्यावहारिक है। इन दिशाओं में और काम किया जा रहा

high adsorption capacity of the developed carbons makes them more advantageous than other adsorbents like zeolite and MOFs. As compared to other materials, the preparation of these porous carbons are easier and more practical due to the large availability of the precursor. More work is underway in these directions.

Journal of CO₂ Utilization, 45 (2021) 101450

स्वास्थ्य संरक्षण

Health Care

स्वस्थ रहना लोगों की आकांक्षाओं की सूची में सबसे ऊपर है। इसलिए यह उचित है कि वैश्विक सम्मेलनों, संधियों और नीतियों की एक विस्तृत श्रृंखला में स्वास्थ्य को मानव अधिकार के रूप में मान्यता दी गई है। सीएसआईआर-सीएसएमसीआरआई में काफी लंबे समय से स्वास्थ्य सेवा की दिशा में काफी प्रयास चल रहे हैं। संस्थान मानवता के अधिकतम लाभ के लिए समृद्ध समुद्री और तटीय प्राकृतिक संसाधनों की खोज पर केंद्रित है। समय के साथ, समुद्री शैवाल को असाधारण स्वास्थ्य लाभ के साथ महत्वपूर्ण समुद्री भोजन के रूप में पहचाना गया है। इसके अलावा, ये विभिन्न जैविक रूप से महत्वपूर्ण यौगिकों के संभावित संग्रह भी हैं। संस्थान के शोधकर्ता सक्रिय रूप से कैंसर जैसी जटिल बीमारियों से पैर के संक्रमण तक के इलाज के लिए विभिन्न समुद्री शैवाल-व्युत्पन्न यौगिकों की चिकित्सीय क्षमता को समझने की कोशिश की हैं। विभिन्न निदानों में महत्वपूर्ण होने के कारण, विभिन्न ऑप्टिकल के साथ-साथ विद्युतरासायनिक संवेदकों को विकसित करने पर भी बहुत जोर दिया गया है। हमारी झोली में विभिन्न टीआरएल स्तरों पर सेंसर हैं। इसमें हृदय रोग, न्यूरोडीजेनेरेटिव रोग, मधुमेह, कैंसर, प्रतिक्रियाशील ऑक्सीजन प्रजाति और ऑक्सीडेटिव तनाव के लिए विभिन्न बायोमार्कर के लिए सेंसर शामिल हैं। इसके अलावा, समुद्री शैवाल में रहने वाले विभिन्न एंडोफाइटिक जीव संभावित अनुप्रयोगों के कारण उत्साहजनक हैं। दवा वितरण और बायोइमेजिंग की दिशा में संस्थान का महत्वपूर्ण योगदान है। हमने ऑर्गेनेली विशिष्ट कंट्रास्ट एजेंट और पैरामैग्नेटिक आयनिक तरल आधारित अविषाक्त एमआरआई कंट्रास्ट एजेंट विकसित किए हैं। बैक्टीरियल किट जैसे प्वाइंट ऑफ केयर डिटेक्शन के लिए किट विकसित करने में हमारी मौजूदगी है। इस प्रकार के श्रेष्ठ प्रायोगिक कार्यों के समानांतर, सीएसआईआर-सीएसएमसीआरआई के बुद्धिजीवियों का झुकाव विभिन्न जैविक क्षेत्रों के आणविक तंत्र को समझने के लिए आधुनिक कम्प्यूटेशनल उपकरणों की ओर भी हैं। इन उन्नत कम्प्यूटेशनल दृष्टिकोणों में कई जैव-आणविक प्रक्रियाओं के दौरान परमाणु स्तर की पारस्परिकता को समझने के लिए आणविक गतिकी सिमुलेशन का उपयोग करना शामिल है। 2020-21 के दौरान कुछ प्रमुख प्रयासों का संक्षिप्त विवरण नीचे प्रस्तृत किया गया है।

Being healthy is at the top of the list of people's aspirations. It is therefore appropriate that health has been recognized as a human right in a wide range of global conventions, treaties and policies. There are plenty of ongoing efforts towards healthcare for quite a long time at CSIR-CSMCRI. The institute focuses on exploring prosperous marine and coastal natural resources for the maximal advantage of humanity. With time, Seaweeds have been identified as important seafood with exceptional health benefits. In addition, these are also potential reservoirs of various biologically important compounds. Researchers at the institute are actively engaged in understanding the therapeutic potential of various seaweed-derived compounds for treating foot infections to cancerlike complex diseases. Due to the critical importance in various diagnostics, great emphasis has also been given to developing various optical as well as electrochemical sensors. We have sensors, at various TRL levels, in our kitty. This includes sensors for various biomarkers for cardiovascular disease, neurodegenerative disease, diabetes,

cancer, Reactive Oxygen Species and oxidative stress. In addition, various endophytic organisms residing in seaweeds are also enthralling for their potential applications. Institute has significant contributions toward the drug delivery and bioimaging. We have developed organeli specific contrast agents and paramagnetic ionic liquid based nontoxic MRI contrast agents. We have a presence in developing kits for point of care detections, like bacterial kits. In parallel to such a classic experimental course of action, the intellectuals at CSIR-CSMCRI also lean towards the modern computational tools to understand molecular mechanisms of various biological fields. These advanced computational approaches involve using Molecular Dynamic Simulations to conceive atomistic level interactions during numerous biomolecular processes. A brief some of the selient efforts during 2020-21 has been presented below.

कॉलेरपा प्रजाति की कैंसर-रोधी क्षमता Anticancer potential of Caulerpa species

समुद्री शैवाल को एक आशाजनक पौष्टिक भोजन माना जाता है और यह मानव उपभोग के लिए सुरक्षित है क्योंकि उनके महत्वपूर्ण स्वास्थ्य लाभ हैं। प्रचुर मात्रा में उपलब्ध पांच उष्णकटिबंधीय समुद्री शैवाल, कॉलरपा रेसमोसा वेरा. मैक्रोफिसा, कॉलेरपा स्केलेपेलिफोर्मिस, ग्रेटेलूपिया इंडिका, सरगासम लिनेरिफोलियम, और स्पैट्रग्लोसम एर-परम, जो की मेटाबोलाइट्स, फेनोलिक, और फ्लेवोनोइड यौगिकों में समृद्ध हैं, कैंसर से जुड़े प्रमुख जीन एवं कोशिका अध: पतन की प्रतिलेख अभिव्यक्ति सहित एंटी-प्रोलिफ़रेटिव और आरओएस निरोधात्मक गतिविधियों के लिए विश्लेषण किया गया। कॉलरपा रेसमोसा वेरा. मैक्रोफिसा ने अर्क की कम खुराक के साथ अधिकतम प्रभावी गतिविधियों को दिखाया, HeLa एवं Huh-7 के लिए ईसी 50 मात्रा क्रमशः लगभग 130±30 और 23±1 µg mL⁻¹। इसी प्रकार सी. स्केलपेलिफोर्मिस ने ईसी50 मात्रा को क्रमशः 200±10 और 140±30 μg mL-1 दिखाया। इसी तरह, कॉलरपा प्रजाति के साथ HeLa एवं Huh-7 कोशिकाओं के लिए, क्रमशः लगभग 56% और 54% आरओएस अवरोध को निर्धारित किया गया। परिणामों ने संकेत दिया कि उष्णकटिबंधीय हरी समुद्री शैवाल कॉलरपा प्रजाति (सी. रेसमोसा वेरा. मैक्रोफिसा और सी. स्केलपेलीफॉर्मिस) में आरओएस अवरोध की पर्याप्त क्षमता है। इसके अलावा, यह देखा गया

Seaweeds are considered a promising functional food and safe for human consumption as they have significant health benefits. Five abundant tropical seaweeds, Caulerpa racemosa var. macrophysa, Caulerpa scalpelliformis, Grateloupia indica, Sargassum linearifolium, and Spatoglossum asperum, rich in metabolites, phenolic, and flavonoid compounds, were analyzed for the antiproliferative and ROS inhibitory activities including transcript expression of cancerlinked key genes and apoptosis. C. racemosa var. macrophysa showed the maximum effective activities with a lower dose of extract, about 130 ± 30 and 23 ± 1 µg mL-1 EC50 dose for HeLa and Huh-7 respectively. Likewise C. scalpelliformis, showing EC50 dose about 200 ± 10 and 140 ± 30 μg ml-1 respectively. Similarly, about 56% and 54% ROS inhibition were determined with Caulerpa spp. for HeLa and Huh-7 cells, respectively. Results indicated that tropical green seaweed Caulerpa spp. (C. racemosa var. macrophysa and C. scalpelliformis) have substantial potentials of ROS inhibition. Further, it was

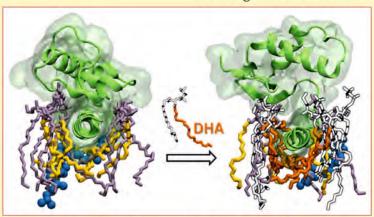
कि विभिन्न कैंसर से जुड़े मार्कर प्रोटीन एन्कोडिंग जीन अलग-अलग सेल लाइनों में समुद्री शैवाल के अर्क के साथ भिन्न प्रकार से व्यक्त होते हैं। कुल मिलाकर, यह निष्कर्ष निकाला गया है कि कॉलरपा प्रजाति, एंटीऑक्सिडेंट और एंटी-प्रोलिफेरेटिव गतिविधियों में समृद्ध हैं। कॉलरपा प्रजाति में क्षमता है, जिसे कैंसर निवारक गुणों या पौष्टिक भोजन या न्यूट्रास्यूटिकल्स अनुप्रयोगों के लिए आगे अन्वेषण की आवश्यकता है।

observed that different cancer-linked marker proteins encoding genes were differentially expressed with seaweed extracts in different cell lines. Overall, it is concluded that *Caulerpa spp.* is rich in antioxidant and anti-proliferative activities. *Caulerpa spp.* has the potential to be explored further for cancer-preventive properties or functional food or nutraceuticals applications.

Molecular Biology Reports, 47 (2020) 7403-7411

पार्किसंस रोग से जुड़े α-सिन्यूक्लिन के वसीय अम्ल आधारित विनियमन के तंत्र का अनावरण

Unrevealing the mechanism of the fatty-acid dependent regulation of αsynuclein associated with Parkinson's Disease


हमारी सर्वोत्तम जानकारी के अनुसार,वर्तमान कम्प्यूटेशनल अध्ययन, एक मूल सिनैप्टिक पुटिका जैसी झिल्ली में मोनोमेरिक α-सिन्युक्लिन के वसीय अम्ल आधारित नियामक तंत्र में पहली परमाणुवादी अंतर्दृष्टि प्रदान करता है। α-सिन्यूक्लिन एक न्यूरोनल प्रोटीन है, जिसकी मिसफोल्डिंग और एकत्रीकरण पार्किसंस रोग सहित कई तंत्रिका-अपक्षयी विकार से जुड़ा है। इस बात के पर्याप्त प्रमाण हैं कि शारीरिक कार्यों और α -सिन्युक्लिन के रोगजनक एकत्रीकरण दोनों वसा और वसीय अम्ल के प्रकारों के साथ घनिष्ठ रूप से जुड़े हुए हैं; हालाँकि, इनका नियामक तंत्र अस्पष्ट बना हुआ है। हमारे सिमुलेशन से पता चलता है कि कैसे डोकोसहेक्सेनोइक अम्ल (डीएचए), जो की मस्तिष्क में प्रचुर मात्रा में पाया जाने वाला एक ओमेगा-3 बह-असंतुप्त वसीय अम्ल है, प्रोटीन के साथ अंत:-क्रिया के लिए एक उल्लेखनीय प्रवृत्ति प्रदर्शित करता है और प्रोटीन झिल्ली के सुक्ष्म पर्यावरण को संशोधित करके इसकी गठन और ओलिगोकरण प्रवृत्ति को संशोधित करता है। डीएचए श्रृंखलाओं की अनूठी गठनात्मक विशेषताएं विशिष्ट जैव-भौतिकीय गुणों के साथ वसा द्विपरत को स्थायित्व प्रदान करती हैं, जो द्विपरत को प्रोटीन प्रविष्टि के लिए अधिक अनुकूल बनाता हैं लेकिन कोशिका-विषाक्तता से जुड़े α-

The present computational study, to the best of our knowledge, provides the first atomistic insights into the fatty-acid dependent regulatory mechanism of monomeric αsynuclein in a native synaptic vesicle-like membrane. α-Synuclein is a neuronal protein, whose misfolding and aggregation are associated with a range of neurodegenerative disorders, including Parkinson's disease. There is ample evidence that both physiological functions and pathogenic aggregation of αsynuclein are intimately linked with lipid interactions and fatty-acid type; however, the regulatory mechanism remains unclear. Our simulations show how docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid abundantly found in the brain, exhibits a marked propensity to interact with the protein and modulates its conformation and oligomerization propensities by modulating the membrane microenvironment of the protein. The unique conformational features of DHA chains endow lipid bilayers with specific biophysical properties, making the bilayers more amiable to protein insertion but resistant to α-synuclein-induced perturbation,

सिन्यूक्लिन-प्रेरित दुष्प्रभाव का प्रतिरोध करता हैं। इस कार्य के निहितार्थ आयू/ बीमारी से संबंधित मानव मस्तिष्क में वसा संयोजन और तंत्रिका-अपक्षयी रोगों के प्रसार के क्रमागत विकास को समझने में हैं।

associated with cytotoxicity. The work has implications towards understanding the age-/ disease- related evolution of human brain lipid composition and propagation neurodegenerative diseases.

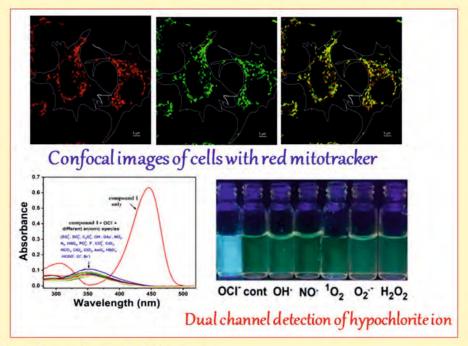
चित्र: α-सिन्यूक्लिन के साथ बहुअसंतृप्त डीएचए श्रृंखलाओं की अधिमान्य परस्पर क्रिया। **Figure:** Preferential interactions of polyunsaturated DHA chains with α -synuclein.

ACS Chemical Neuroscience, 12 (2020) 675-688

स्वास्थ्य सेवा संबंधी उपयोगों के लिए सेंसर का विकास Development of sensors for healthcare uses

स्वास्थ्य देखभाल अनुप्रयोगों के लिए उपयोगी विभिन्न Various sensors useful for healthcare सेंसर विकसित किए गए हैं, जिनमें शामिल हैं:

माइटोट्रैकर: यह ऑक्सीडेटिव तनाव के दौरान माइटोकॉन्ड्रिया के अंदर एंटी-ऑक्सीडेंट ग्लूटाथायोन को माप सकता है। माइटोट्रैकर बिना किसी हस्तक्षेप के अन्य प्रतिरपर्धी अमीनो अम्लों की उपस्थिति में भी शारीरिक पीएच पर चयनात्मक रूप से बायोथॉयोल ग्लूटाथायोन का पता लगा सकता है। ग्लूटाथायोन की पहचान अवशोषण और प्रतिदीप्ति तकनीकों के माध्यम से भी किया जा सकता है। प्रोब द्वारा ग्लूटाथायोन की विशिष्ट पहचान को नग्न आंखों द्वारा दृश्य एवं पराबैगनी रोशनी में भी देखा जा सकता है। एमटीटी परख ने रिसेप्टर्स की अविषाक्त प्रकृति साबित हुई।


क्रियाशील ऑक्सीजन स्पीसीज़ के लिए सेंसर: हाइपोक्लोरस अम्ल एक महत्वपूर्ण क्रियाशील ऑक्सीजन स्पीसीज़ (आरओएस) है, जो एक प्रबल ऑक्सीडेंट होने के कारण कोविड -19 महामारी के दौरान कोरोनावायरस के

applications are developed, which includes:

Mitotracker: This can measure the antioxidant glutathione inside mitochondria during oxidative stress. The mitotracker can detect the biothiol glutathione selectively at physiological pH even in presence of other competing amino acids without interference. The recognition of glutathione can be followed via absorbance and fluorescence techniques as well. Specific detection of glutathione by the probe can be observable by the naked eyes under visible and UV lights as well. MTT assay proved nontoxic nature of the receptors.

Sensor for Reactive Oxygen Species: Hypochlorous acid is an important reactive oxygen species (ROS), which being a strong प्रसार को नियंत्रित करने के लिए कीटाणुनाशक के रूप में उपयोग किया गया। हाइपोक्लोरस अम्ल की निगरानी के लिए सेंसर विकसित करने के लिए, हमने अन्य प्रतिस्पर्धी आरओएस और आरएनएस पर विश्लेष्य चयनात्मकता के साथ पता लगाने के लिए एक पानी में घुलनशील दोहरी सिग्नलिंग कीमोडोसमीटर विकसित किया है।

oxidant was used as a disinfectant to control the spread of the coronavirus during the COVID-19 pandemic. In order to develop sensors for monitoring hypochlorous acid, we have developed a water-soluble dual signaling chemodosimeter to detect the analyte selectivity over other competitive ROS & RNS.

चित्र: विभिन्न जैविक रूप से महत्वपूर्ण स्पीसीज का संवेदन।
Figure: Sensing of various biologically key species.

कैंसर विरोधी चिकित्साविधान के लिए समुद्री शैवाल पॉलीसेकेराइड व्युत्पन्न नैनोकम्पोजिट

Seaweed polysaccharide derived nanocomposite for anticancer therapeutics

इस अध्ययन में, हमने समुद्री शैवाल पॉलीसेकेराइड अगर से अगर एल्डिहाइड (Aald) विकसित किया। इस Aald का उपयोग ठोस सिल्वर नैनोकम्पोजिट (Aald-AgNPs) तैयार करने के लिए किया जाता है। Aald-AgNPs को इन विट्रो और इन विवो एंटीकैंसर गतिविधि के लिए परीक्षित किया गया। Aald-AgNPs ने 3 कैंसर सेल लाइनों के विरुद्ध गतिविधि का प्रदर्शन किया। एमई-180, कोलोन-26, और एचएल-60 जीनोग्राफ़्ट चूहों के ट्यूमर मॉडल के विरुद्ध इन

In this study, we developed agar aldehyde (Aald) from seaweed polysaccharide agar. This Aald is used for the preparation of solid silver nanocomposite (Aald-AgNPs). Aald-AgNPs tested for in vitro and in vivo anticancer activity. Aald-AgNPs exhibited activity against 3 cancer cell lines. Results of in vivo anticancer activity against ME-180, Colon-26, and HL-60 xenograft mice tumor models showed 64%,

विवो एंटीकैंसर गतिविधि के परिणाम से पता चलता है कि चूहों के जीवित रहने की दर 83-100% थी, जबिक ट्यूमर की मात्रा में क्रमशः 64%, 27.3% और 51% की कमी हुई। Aald-AgNPs ने सामान्य अस्थि मज्जा व्युत्पन्न मेसेनकाइमल स्टेम कोशिकाओं की जीवक्षमता और चयापचय गतिविधि पर कोई महत्वपूर्ण हानिकारक प्रभाव प्रदर्शित नहीं किया। इस अध्ययन के अनुसार, समुद्री शैवाल बहुलक कैंसर चिकित्सा विज्ञान के लिए नैनोकम्पोजिट विकसित करने के लिए उपयुक्त हैं।

27.3%, and 51% reduction in tumor volume, respectively with 83-100% survival rate. Aald-AgNPs did not exhibit any significant detrimental effect on viability and metabolic activity of normal bone marrow-derived mesenchymal stem cells. According to this study, seaweed polymers are suitable to develop nanocomposites for cancer therapeutics.

चित्र: ज़ीनोग्राफ़ट चूहों के मॉडल में ट्यूमर को कम करने के लिए संभावित एंटी-कैंसर एजेंट के रूप में संश्लेषण और जैविक मूल्यांकन को प्रक्रिया को दर्शने वाली योजना। Aald-AgNPs सामान्य स्टेम कोशिकाओं पर जैव-संगत और सुरक्षित हैं। Figure: Scheme illustrating process of synthesis and biological evaluation of as potential anticancer agent to reduce tumor in xenograft mice models. Aald-AgNPs are biocompatible and safe on normal stem cells.

Carbohydrate Polymers, 240) 2020) 116282

समुद्री शैवाल बायोमास आधारित पैर देखभाल जेल Seaweed biomass-based foot care gel

पसीना बैक्टीरिया के साथ मिलकर पैरों के तलवों पर उगता है और पैरों में एक अप्रिय गंध पैदा करता है। सीएसआईआर-सीएमसीआरआई के वैज्ञानिकों ने जल आधारित पैर देखभाल जेल (टिप्टो) विकसित किया। इसमें मुख्य रूप से जीवाणुरोधी यौगिक, योजक और परिरक्षक के संयोजन में जेलिंग समुद्री शैवाल पॉलिमर शामिल हैं। फुट जेल मानव में पैरों की समस्याओं जैसे पैरों की दुर्गंध, बैक्टीरिया के संक्रमण, पैरों से पसीना और मानव में सूखी/ फटी एड़ी का इलाज कर सकता है। पैर जेल संयोजन 6 महीने तक स्थिर

Sweat combines with bacteria grow on the soles of the feet and produces an unpleasant odour in the feet. CSIR-CSMCRI scientists developed a water-based foot care gel (Tiptoe). It mainly comprises the gelling seaweed polymers in combination with antibacterial compounds, additives and preservatives. The foot gel can treat foot problems such as foul foot odour, bacterial infection, foot perspiration and dry/ cracked heel in human. The foot gel composition is

है। गुजरात और पश्चिम बंगाल से चुने गए स्वयंसेवकों में फुट जेल का परीक्षण किया गया है। परीक्षा के परिणामों से पता चला कि 100 माइक्रोग्राम पैर जेल दुर्गंध पैदा करने वाले बैक्टीरिया को पूरी तरह से हटाने में सक्षम है। यह पैर को ठंडा, ताजा और मुलायम भी रखता है। stable for up to 6 months. The foot gel has been tested in volunteers selected from Gujarat and West Bengal. The examination results revealed that 100 µg foot gel is able to completely remove the foul odour causing bacteria. It also keeps the foot cool, fresh and soft.

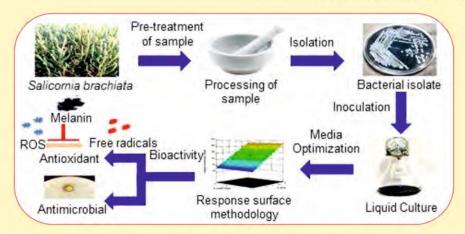
चित्रः पैर देख भाल जेल तैयार एवं उपयोग करने का योजनाबद्ध निरूपण।

Figure: Schematic representation of the preparation of foot care gel & uses.

Indian Patent: No. 202011036009, dated 20/08/2020

हेलोफाइट सैलिकोर्निया ब्रैकीएटा से संबद्ध एंडोफाइटिक बैसिलस सबटिलिस 4एनपी-बीएल द्वारा निर्मित प्राकृतिक मेलेनिन

Natural melanin produced from the Endophytic Bacillus subtilis 4NP-BL associated with the Halophyte Salicornia brachiata


एक मेलेनिन-उत्पादक एंडोफाइटिक जीवाणु को हेलोफाइट सैलिकोर्निया ब्रैकीएटा से पृथक किया गया और आगे 16S rRNA जीन अनुक्रमों के फ़ाइलोजेनेटिक विश्लेषण द्वारा बैसिलस सबटिलिस 4NP-BL के रूप में पहचाना गया। पृथक मेलेनिन एक अनियमित संरचना के साथ यूमेलानिन वर्ग से संबंधित था, जैसा कि तात्विक विश्लेषण, यूवी-विज्ञ, फूरियर ट्रांसफॉर्म इंफ्रारेड (एफटी-आईआर), स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी (एसईएम), इलेक्ट्रॉन पैरामैंग्नेटिक रेजोनेंस (ईपीआर), और एनएमआर अध्ययनों द्वारा पृष्टि की

A melanin-producing endophytic bacterium was isolated from the halophyte Salicornia brachiata and further identified as Bacillus subtilis 4NP-BL by phylogenetic analysis of 16S rRNA gene sequences. The isolated melanin belonged to the eumelanin class with an irregular structure as confirmed by elemental analysis, UV-vis, Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), and

गई। इसके अलावा, शुद्ध किए हुए मेलेनिन ने रोगज़नकों ज़ैंथोमोनास कैंपेस्ट्रिस और अल्टेरोमोनास मैकलियोड़ी के विरूद्ध एंटीऑक्सिडेंट गतिविधि और रोगाणुरोधी गतिविधि प्रदर्शित की। इस प्रकार, यह अध्ययन आगे एंडोफाइट्स की एक संभावित भूमिका का सुझाव देता है जो पर्यावरणीय तनाव और अन्य रोगजनकों से पोषिता पौधों की सुरक्षा में सहायता करने में मेलेनिन का उत्पादन कर सकता है।

NMR studies. Furthermore, purified melanin displayed antoxidative activity and antimicrobial activity against pathogens Xanthomonas campestris and Alteromonas macleodii. Thus, this study further suggests a probable role of endophytes that produce melanin in aiding host plant protection from environmental stress and other pathogens.

चित्रः एंडोफाइट के पृथक्करण का कार्यप्रवाह, मेलेनिन का निष्कर्षण और लक्षण वर्णन।

Figure: Workflow of isolation of endophyte, extraction and characterization of melanin.

Journal of Agricultural and Food Chemistry, 68 (2020) 6854-6863

ऊर्जी

Energy

ऊर्जा समकालीन वैश्विक अर्थव्यवस्था का एक प्रमुख घटक है। हरियाली और सतत ऊर्जा के बिना मानव जाति का सतत विकास असंभव है। समुद्री ऊर्जा पृथ्वी पर अभी तक सबसे कम खोजे गए नवीकरणीय ऊर्जा स्रोतों में से एक है। विभिन्न भौतिक समुद्री ऊर्जाओं के अलावा, "सांद्रता-सेल" में लवण प्रवणता का दोहन किया जा सकता है और इसे पूर्व में सीएसआईआर-सीएसएमसीआरआई में आजमाया जा चुका है। वर्तमान समय में हरित हाइड्रोजन को ऊर्जा का सबसे स्थायी स्रोत माना जा रहा है। हालांकि मीठे पानी की कमी को देखते हुए, प्रचुर मात्रा में उपलब्ध समुद्री जल का सीधा विभाजन बड़े पैमाने पर एकमात्र स्थायी समाधान है। समुद्री जल बैटरी किसी भी विषाक्त या ज्वलनशील सामग्री रहित अक्षय ऊर्जा का एक और तेजी से उभरता स्रोत है और परंपरागत बैटरी की तूलना में अधिक आसानी से पुन: चक्रणीय है। वर्तमान में सीएसआईआर-सीएसएमसीआरआई के पास थीम ऊर्जा के तहत एचईआर, ओईआर और CO, आरआर, रेडॉक्स फ्लो बैटरी, ईंधन सेल और अपशिष्ट बायोमास के उपयोग पर विशेषज्ञता है। संस्थान के पास रेडॉक्स फ्लो बैटरी, फ्युल सेल और अन्य समान उपकरणों के लिए अभिनव इलेक्ट्रोड्स, इलेक्ट्रोलाइट और पॉलीमेरिक सेपरेटर पर अविश्वसनीय विशेषज्ञता है। संस्थान में सौर-ऊर्जा समृह दरगामी सौर तापीय ऊर्जा प्रौद्योगिकियों के अध्ययन और विकास पर केंद्रित है। सौर ड्रायर, सौर तालाब, आसवन, प्रशीतन, सौर पंप, सांद्रक, स्टर्लिंग इंजन, सौर निष्क्रिय शीतलन, सौर अपशिष्ट जल उपचार और कई अन्य तकनीकों की परख की गई और उनमें से कई का परीक्षण क्षेत्र पर किया जा रहा है। संस्थान ऐसी तकनीकों का निर्माण करने का प्रयास कर रहा है जिनका उपयोग ग्रामीण घरों में पीने योग्य पानी की आपूर्ति, खाना पकाने और सुखाने के लिए सौर तापीय ऊर्जा के साथ-साथ बायोमास के थर्मोकेमिकल रूपांतरण के द्वारा किया जा सकता है। इस प्रस्तावना के साथ, हम ऊर्जा विषय के तहत 2020-21 के दौरान किए गए कुछ सबसे महत्वपूर्ण कार्यों पर प्रकाश डाल रहें हैं।

Energy is a prime component of the contemporary global economy. Sustainable development of mankind is far-fetched without greener and sustainable energy. Marine energy is one of the largest yet least explored renewable energy sources on the earth. Apart from various physical marine energies, salinity gradients can be exploited in "concentration-cell" and have been tried in the past at CSIR-CSMCRI. In present-day Green hydrogen is considered as the most sustainable source of energy. Although considering the scarcity of freshwater, direct splitting of abundant seawater is the only enduring solution at a large scale. Seawater batteries are another fast emerging source of renewable energy without involving any toxic or flammable materials and are more easily recyclable than conventional batteries. Currently, CSIR-CSMCRI has expertise on HER, OER and CO₂RR, Redox flow battery, fuel cell and utilization of waste biomass under the theme energy. Institute has incredible expertise in the innovative electrodes, electrolyte and polymeric separators for redox flow batteries, fuel cell and other similar devices. The solar group in the institute focuses on the study and development of farreaching solar thermal energy technologies. Solar dryer, solar ponds, distillation,

refrigeration, solar pumps, concentrators, sterling engines, solar passive cooling, solar waste-water treatment and a variety of other technologies were investigated and many of them are being tested on the field. The institute is attempting to create technologies that may be used in rural houses to supply potable water, cooking and drying by capturing solar thermal energy as well as the thermochemical conversion of biomass. With this preface, we highlight some of the most important work done during 2020-21 under the theme ENERGY.

ऊर्जा रूपांतरण और भंडारण के लिए एमओएफ व्युत्पन्न नैनोमटेरियल्स MOF-derived nanomaterials for energy conversion and storage

कोबाल्ट-आधारित धातु-कार्बनिक ढांचे (एमओएफ) को विभिन्न तापमानों, यानी 600, 700, 800 और 900°C, पर तापीय विघटन द्वारा एक उल्लेखनीय विद्युतरासायनिक गतिविधि युक्त धात्विक कोबाल्ट से घिरा हुआ नाइट्रोजन-डोप्ड कार्बन हाइब्रिड नैनोमटेरियल को विकसित किया गया। सभी कार्बनीकृत सामग्रियों की संरचनात्मक और रूपात्मक प्रामाणिकता स्थापित करने के लिए विभिन्न वैश्लेषिक विधियों के द्वारा लक्षण-वर्णन किया गया। मानक तीन-इलेक्ट्रोड प्रणाली का उपयोग करके विद्युतरासायनिक मापन किए गए। कार्बनीकृत एमओएफ सामग्री की श्रृंखला में, एक

A metallic cobalt encased Nitrogen-doped carbon hybrid nanomaterial with remarkable electrochemical activity was developed from cobalt-based Metal-Organic Frameworks (MOFs) by thermal decomposition at different temperatures, i.e., 600, 700, 800 & 900°C. All the carbonised materials have been characterised by various analytical methods to establish structural and morphological character. The electrochemical measurements were performed using a standard three-electrode system. Among the series of

चित्र: एमओएफ व्युत्पन्न Co@N-डोप्ड कार्बन नैनोमटेरियल्स के निर्माण के लिए चित्रमय निरूपण और एक OER इलेक्ट्रोकैटलिस्ट के रूप में उनका अनुप्रयोग।

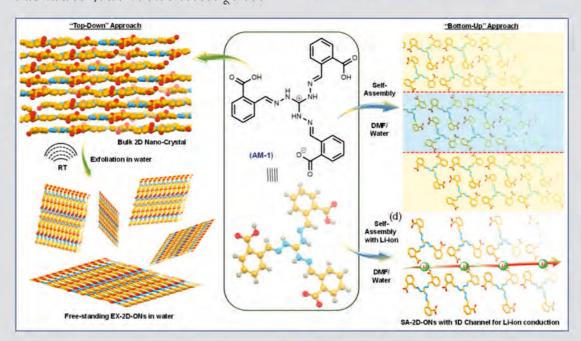
Figure: Graphical representation for the fabrication of MOF derived Co@N-doped carbon nanomaterials and their application as an OER electrocatalysts.

नमुना जो 900°C पर तापीय विघटन द्वारा बनाया गया उसने क्षारीय माध्यम मे ऑक्सीजन उत्पादन तथा अम्लीय माध्यम मे हाइडोजन उत्पादन करने की आशाजनक गतिविधि दिखाई। सामग्री को ओईआर के लिए कम ओवरपोटेंशियल। टॉफेल स्लोप और बेहतर स्थिरता के साथ एक अत्यधिक कुशल इलेक्ट्रो-उत्प्रेरक के रूप में नामित किया गया। बहुत कम ओवरपोटेंशियल (210 mV) पर मानक धारा घनत्व 10 mA cm-2 प्राप्त कर लिया गया। यह इंगित करता है कि ओईआर गतिकी प्रतिक्रिया उल्लेखनीय रूप से उच्चतर है जो बेहतर गतिविधि को प्रदर्शित करता है। सर्वश्रेष्ठ ओईआर प्रदर्शन को ध्यान में रखते हुए, वैद्युतरासायनिक सक्रिय सतह क्षेत्र, स्थिरता/ स्थायित्व और वैद्युत प्रतिबाधा के मापन हेतु प्रयोग किए गए, जो वैद्युतउत्प्रेरक के कुशल वैद्युतउत्प्रेरण प्रदर्शन का भी समर्थन करता है। वर्तमान अन्वेषण में एक व्यवहार्य और व्यवस्थित रणनीति के साथ-साथ संभावित वैद्युतउत्प्रेरक के रूप में अत्यधिक सक्रिय कार्यात्मक नैनोसामग्री विकसित करने में नई समझ और पूर्वकथन शामिल हैं।

carbonised MOF materials, the one prepared at 900°C revealed promising electrochemical activity towards oxygen evolution in alkaline and hydrogen evolution in acidic media. The material is designated as a highly efficient electrocatalyst with low overpotential/ Tafel slope and superior stability for OER. A standard current density of 10 mA cm-2 was achieved at a smaller overpotential (210 mV). This indicates OER kinetics response is significantly higher displaying the superior activity. In view of the best OER performance, experiments have been performed to measure the electrochemically active surface area, stability/ durability and electrical impedance, which also supports the efficient electrocatalytic performance electrocatalyst. Present investigation involves a viable and systematic strategy as well as new understanding and predictions in developing highly active functional nanomaterials as potential electrocatalysts.

Applied Surface Science 529 (2020) 147081

लिथियम-आयन चालन के लिए क्रिस्टलीय स्वरःथायी द्विआयामी ज़्वीटरआयनिक कार्बनिक नैनोशीट


Crystalline free-standing two-dimensional zwitterionic organic nanosheets for lithium-ion conduction

असीमित पार्श्व आयामों के साथ परमाणु या निकट-परमाणु मोटाई वाले क्रिस्टलीय द्वि-आयामी कार्बनिक नैनोशीट्स (2D-ONs) उनके अद्वितीय संरचनात्मक और भौतिक गुणों के कारण ऊर्जा भंडारण के लिए सामग्री के रूप में उनके संभावित अनुप्रयोग के लिए महत्वपूर्ण हैं। अनुकूल लिथियम-आयन परिवहन के लिए ऐसे 2D-ONs में आणविक अंतर्परतों के डिज़ाइन किए गए सरणी के साथ नैनोफ्लुइडिक चैनलों की उपस्थिति लिथियम-आयन बैटरी की प्रभावकारिता में सुधार के लिए विशेष महत्व रखती है। हालांकि, उपयुक्त एकलकों और सुविधाजनक तैयारी विधियों की कमी के कारण क्रिस्टलीय 2D-ONs का तर्कसंगत

two-dimensional Crystalline organic nanosheets (2D-ONs) having atomic or nearthickness with infinite dimensions are of crucial significance for their possible application as a material for energy storage due to their unique structural and properties. The physical presence nanofluidic channels with a designed array of molecular interlayers in such 2D-ONs, for a favorable lithium-ion transport has special significance for improving the efficacy of lithium-ion batteries. However, the rational design of crystalline 2D-ONs remains a challenge due to the lack of appropriate

डिजाइन एक चुनौती बना हुआ है। इस काम में, हम पहली बार एक छोटे कार्बनिक अणु (AM-1) के स्व-संयोजन के माध्यम से गठित ज़्वीटरआयनिक 2D-ONs के लिथियम-आयन संचालन व्यवहार को प्रस्तुत कर रहे हैं। स्व-संयोजन और एक्सफोलिएशन दोनों ही विधियों से प्राप्त परिणामी शीट्स को PXRD, SAED के साथ ही साथ विभिन्न इलेक्ट्रॉन और एटॉमिक फोर्स माइक्रोस्कोपी के द्वारा लक्षण-वर्णन किया गया। ऐसे सूक्ष्म और संरचनात्मक अध्ययनों के परिणाम (एकल-क्रिस्टल एक्सआरडी मापन) इन स्वस्थायी 2D-ONs की निकट-परमाणु (~ 3.5 nm) मोटाई की पृष्टि करते हैं। नैनोशीट कुछ माइक्रोमीटर की व्यापक रैखिक समस्तरता के साथ उल्लेखनीय स्थिरता प्रदर्शित करते हैं। ज़्वीटरआयनिक एकलक स्केफोल्ड की विवेकपूर्ण चयन

monomers and convenient preparation methods. In this work, we report for the first time the lithium-ion conducting behavior of zwitterionic 2D-ONs, formed through selfassembly of a small organic molecule (AM-1). The resulting sheets obtained from both the self-assembly and exfoliation approach were characterized by PXRD, SAED, as well as various electron and atomic force microscopy. Results of such microscopic and structural studies (single-crystal XRD measurements) confirm the near-atomic (~ 3.5 nm) thickness free-standing 2D-ONs. nanosheets exhibit remarkable stability having broad linear planarity of a few micrometers. The judicious choice of

चित्र: जल में पराश्रव्य प्रेरित एक्सफोलिएशन के माध्यम से बल्क नैनोक्रिस्टल से एक्सफ़ोलीएटेड 2डी-कार्बनिक नैनोशीट (EX-2D-ONs) के निर्माण का योजनाबद्ध चित्रण। AM-1 की आणविक संरचना। डाइमिथाइलफॉर्मामाइड (डीएमएफ)/ जल (1:1 वी/वी) विलयन सिस्टम में स्व-संयोजन के जिए स्व-संयोजित 2डी-कार्बनिक नैनोशीट्स (एसए-2डी-ओएनएस) के निर्माण का योजनाबद्ध चित्रण। SA-2D-ONs लिथियम-आयन संचालन के लिए 1D चैनल के साथ।

Figure: Schematic illustration of the preparation of exfoliated 2D-organic nanosheets (EX-2D-ONs) form bulk nanocrystals through ultrasonic induced exfoliation in water. Molecular structure of AM-1. Schematic illustration of the preparation of self-assembled 2D-organic nanosheets (SA-2D-ONs) through self-assembly in the dimethylformamide (DMF)/water (1:1 v/v) solvent system. SA-2D-ONs with a 1D channel for lithium-ion conduction.

स्वयं-संकलन प्रक्रिया के दौरान एक-आयामी (1D) चैनल के साथ क्रिस्टलीय 2D-ONs के गठन की ओर ले जाती है। AM-1 के क्रिस्टल-पैिकंग आरेख से इसकी आगे और पुष्टि की गई। 2D-ONs में अच्छी तरह से डिज़ाइन किए गए दिशात्मक चैनलों के साथ स्थायी रूप से स्थिर आयिनक केंद्रों की उपस्थित, लिथियम आयनों के परिवहन में सहायक होता है, जिससे कक्ष ताप पर लिथियम-आयन की चालकता 5.14 × 10⁻⁵ Scm⁻¹ प्राप्त हुई। स्व-संकलित 2D-ONs के लिए, समकालीन साहित्य में घटना दुर्लभ है। हम दृढ़ता से मानते हैं कि वर्तमान खोज अन्य आयनों के परिवहन और अन्य अंतःविषय ऊर्जा-संबंधित अनुप्रयोगों के लिए क्रिस्टलीय नैनोस्ट्रक्चर सामग्री का उत्पादन करने के लिए अधिक कार्बनिक अणुओं को डिजाइन करने में सहायक होगी।

zwitterionic monomer scaffold leads to the formation of crystalline 2D-ONs with a onedimensional (1D) channel during the selfassembly process. This was further confirmed from the crystal-packing diagram of AM-1. The presence of permanently immobilized ionic centers with well-designed directional channels in the 2D-ONs, favor transportation of lithium ions with roomtemperature lithium-ion conductivity of 5.14×10⁻⁵ Scm⁻¹. For self-assembled 2D-ONs, the phenomenon is scarce in contemporary literature. We strongly believe that the present finding will favor designing more organic molecules to produce crystalline nanostructured materials for transporting other ions and other interdisciplinary energyrelated applications.

ACS Appl. Mater. Interfaces 12 (2020) 58122-58131.

ईंधन सेल अनुप्रयोग के लिए पीईएम के रूप में सल्फोनेटेड पीवीडीएफ और क्रियाशील सहपॉलीमर का सम्मिश्रण

Blend of sulfonated PVDF and reactive copolymer as PEM for fuel cell application

पॉली (मिथाइल मेथाक्रिलेट)-सह-पॉली (2-एक्रिलामिडो-2-मिथाइल-1-प्रोपेन सल्फोनिक अम्ल (पीएमएमए-सह-पीएएमपीएस) के सहबहुलक को एमएमए/ एएमपीएस के विभिन्न मोल अनुपातों में मूलक बहुलीकरण के माध्यम से तैयार किया गया और ईंधन सेल अनुप्रयोगों हेतु प्रोटॉन विनिमय झिल्ली (पीईएम) तैयार करने के लिए सरल विलयन कास्टिंग विधि द्वारा पॉली विनाइलिडीन फ्लोराइड (पीवीडीएफ) और सल्फोनेटेड पीवीडीएफ (एस-पीवीडीएफ) के विभिन्न वजन अनुपात में सम्मिश्रित किया गया। एस-पीवीडीएफ के साथ सम्मिश्रण द्वारा तैयार किए गए पीईएम ने उच्च प्रोटॉन चालकता (Km मान) का प्रदर्शन किया। PMMA-co-PAMPS (30:70 w/w) के साथ एस-पीवीडीएफ को मिश्रित करके तैयार पीईएम-5 झिल्ली कक्ष ताप पर 5.7 × 10⁻² S/cm Km मान, 5.24 × 10⁻⁷ cm²/s मेथनॉल पारगम्यता (PM) मान और अधिकतम

Copolymers of poly(methyl methacrylate)-copoly (2-acrylamido-2-methyl-1-propane sulfonic acid (PMMA-co-PAMPS) have been prepared via radical polymerization with different MMA to AMPS mole ratios and blended with polyvinylidene fluoride (PVDF) and sulfonated PVDF (S-PVDF) in a different weight ratio to prepare proton exchange membranes (PEMs) by simple solution casting method for fuel cells application (PEMFCs). PEMs prepared by blending with S-PVDF exhibited high proton conductivity (Km value). PEM-5 membrane prepared by blending S-PVDF with PMMA-co-PAMPS (30:70 w/w) exhibited Km of 5.7×10-2 S/cm at room temperature, methanol permeability (PM) value 5.24×10⁻⁷ cm²/s and

शक्ति घनत्व 477 mW/cm² प्रदर्शित करती है। यह PM मान Nafion® 117 झिल्ली (22×10^{-7} cm²/s) की तुलना में बहुत कम है।

maximum power density 477 mW/cm². This PM value is much lower than that of the Nafion® 117 membrane (22×10^{-7} cm²/s).

Renewable Energy, 170 (2021) 974-984

विकेन्द्रीकृत सौर खाद्य संरक्षण प्रणाली Decentralized solar food preservation system

सौर ड्रायर प्रौद्योगिकी सरल है और इसलिए घरेलू, समुदाय और खाद्य प्रसंस्करण क्षेत्र द्वारा आसानी से अपनाई जा सकती है। संस्थान में पापड़, आलू वेफर्स, केला वेफर्स, अंगूर, प्याज, लहसुन, अदरक, लाल मिर्च, मेथी के पत्ते, मशरूम इत्यादि जैसे खाद्य उत्पादों को सुखाने के लिए मिश्रित मोड प्रकार के सौर ड्रायरों को डिजाइन, निर्मित और परीक्षण किया गया है। ड्रायरों की क्षमता प्रति बैच 5-20 किलोग्राम कच्चे माल तक बदली जा सकती है, हालांकि यह सूखाए जाने वाले भोजन की प्रकृति पर निर्भर करता है। विभिन्न खाद्य उत्पादों का शुष्कीकरण खुली धूप में सुखाने में लगने वाले समय से लगभग आधे समय में किया जा सकता है। जिला विकास अधिकारी भावनगर के सहयोग से घोघा एवं गढुला में दो लघु स्तरीय सोलर ड्रायर स्थापित किए गए हैं। सीएसआईआर-सीएसएमसीआरआई सौर तापीय ड्रायर की नवीन विशेषताएं हैं:

- पूरी तरह से सौर तापीय ऊर्जा और सौर फोटोवोल्टाइक (पीवी) बिजली पर संचालित और इसलिए ऑफ-ग्रिड और दूरस्थ स्थानों के लिए उपयुक्त।
- 2. यूनिट के अंदर सोलर पीवी संचालित डीह्यूमिडिफायर स्थापित किया गया है, जोकि रात में वांछित तापमान और सापेक्ष आर्द्रता (आरएच) बनाए रखता है, ताकि नमी के पुन: अवशोषण को रोका जा सके और बैच को कम समय में सुखाया जा सके।
- 3. 85-90% सौर यूवी कट-ऑफ, ताकि बेहतर रंग प्रतिधारण प्राप्त हो, और बेहतर मूल्य प्राप्त हो।
- 4. खराब मौसम के लिए सोलर पीवी संचालित हीटर।

Solar dryer technology is simple and therefore easily adoptable by the household, community and food processing sector. Mixed-mode types of solar dryers have been designed, fabricated and tested for drying of food products like papad, potato wafers, banana wafers, grapes, onion, garlic, ginger, red chilies, methi leaves, mushrooms etcetera at the institute. The capacity of the dryers can be varied from 5-20 Kg of raw material per batch, however it depends on the nature of the food to be dried. The drying of various food products can be achieved in about half the time duration taken for open sun drying. Two small scale solar dryers have been installed with the help of District Development Officer Bhavnagar at Gogha and Gadula. innovative features of CSIR-CSMCRI solar thermal dryer are:

- Operates entirely on solar thermal energy and solar photovoltaic (PV) power and hence suitable for off-grid and remote locations.
- Solar PV-powered dehumidifier installed inside the unit to maintain the desired temperature and relative humidity (RH) at night, in order to prevent reabsorption of moisture and finish drying of a batch in a short time.
- 85-90% solar UV cut-off, so that better colour retention is obtained, and better price fetched.
- 4. Solar PV-operated heaters for inclement weather conditions.

खाद्य उत्पादों के लिए सौर तापीय शुष्कीकरण प्रणाली अक्षय ऊर्जा आधारित प्रौद्योगिकी का प्रदर्शन है।

The solar thermal drying system for food products is a demonstration of renewable energy-based technology.

चित्र: दो मछली पकड़ने वाले गांवों घोघा और गढ़ुला, गुजरात में 2 से 5 किलो/ बैच क्षमता के सोलर ड्रायर का प्रदर्शन।
Figure: Demonstration of 2 to 5 kg/ batch capacity solar dryer at Gogha & Gadula two fishing village, Gujarat.

Solar Energy, 208 (2020) 1091-1102 Bulgarian Chemical Communications, 52 (2020) 53-64

Painting by...

सुश्री काजल लोचाब Ms. Kajal Lochab जल

Water

जल पृथ्वी पर सभी जीवित प्राणियों में सभी प्रकार की चयापचय प्रतिक्रियाओं के लिए माध्यम है। इसलिए जल के बिना जीवन की कल्पना भी नहीं की जा सकती है। दुर्भाग्य से, लापरवाह मानवीय एवं औद्योगिक गतिविधियों के कारण यह दूषित और जीवन रूपों के लिए अनुपयुक्त होता जा रहा है। सीएसआईआर-सीएसएमसीआरआई लगभग पांच दशकों से "जल" के केंद्रीय विषय पर आधारित विविध और अत्यधिक अनुप्रयुक्त अनुसंधान क्षेत्रों में काम कर रहा है। इस संस्थान के वैज्ञानिकों ने विविध अनुप्रयोगों के लिए राल, अधिशोषक, आवेशित (आयन एक्सचेंज झिल्ली) और दबाव संचालित झिल्ली (आरओ, युएफ, एमएफ, एनएफ), रंध्रित फाइबर झिल्ली के विकास के लिए महत्वपूर्ण योगदान दिया है। अतिशुद्ध जल उत्पादन के लिए स्वदेशी वैद्युत-डीआयनीकरण (ईडीआई) और मेटाथेसिस इलेक्ट्रोडायलिसिस (एमईडी) भी ऐसी गतिविधियां हैं जिनमें हम शामिल हैं। संस्थान ने पूरे देश में बहुलका झिल्ली अनुसंधान के साथ-साथ संयंत्र स्थापना में उत्कृष्ट प्रदर्शन किया है। संस्थान सक्रिय रूप से द्षित पानी से जहरीले आयन (आर्सेनिक और फ्लोराइंड) के उपचार, रंजक, तेल और अन्य सामान्य प्रदृषकों पर काम कर रहा है। सर्पिल मॉड्युल कुंडलन विधि का अनुकुलन, झिल्ली मॉड्युल जीणींद्धार, झिल्ली आसवन और पानी के विलवणीकरण और शुद्धिकरण के लिए विभिन्न आयन विनिमय झिल्ली का निर्माण कुछ उल्लेखनीय गतिविधियां हैं। विभिन्न जहरीले धात् आयनों एवं वाष्पशील कार्बनिक संदुषणकों के लिए सेंसर विकास का काम बड़े पैमाने पर किया जाता है। प्रौद्योगिकी/ प्रक्रिया/ उत्पाद उत्कर्ष, अंतरराष्ट्रीय स्तर पर ख्यातिप्राप्त पत्रिकाओं में उच्च गुणवत्ता वाले प्रकाशन और विभिन्न सामाजिक पहल इस विषय के तहत संस्थान के विशिष्ट आउटपुट में योगदान करते हैं। कुछ निष्कर्ष बौद्धिक संपदा अधिकारों द्वारा संरक्षित हैं, और उनमें से कुछ बाहरी पक्षों को लाइसेंस किए गये हैं और वाणिज्यिक गतिविधियों में उपयोग किए जाते हैं। इस प्रस्तावना के साथ, हमें 2020-21 के कुछ प्राथमिकता वाले कार्यों पर प्रकाश डालते हुए प्रसन्नता हो रही है।

Water is the medium for all kinds of metabolic reactions in all living beings on the earth. Therefore, life cannot even be imagined without water. Unfortunately, it is getting contaminated and unfit for lifeforms due to careless anthropological and industrial activities. CSIR-CSMCRI has been working in diverse and highly applied research areas based on the central theme of "water" for about five decades. Scientists of this institute have made significant contributions to the development of resin, adsorbents, charged (ion exchange membranes) and pressure driven membranes (RO, UF, MF, NF), hollow fiber membranes for diversified applications. Indigenous electro-deionization (EDI) and metathesis electrodialysis (mED) for ultrapure water production are also the activities we are involved in. The institute has excelled in polymers/ membrane research as well as plant installation throughout the country. The institute is actively working on toxic ion remediation (arsenic and fluoride), dye, oil and other common pollutants from contaminated water. Spiral module winding method optimization, membrane module rejuvenation, membrane distillation and creation of various ion exchange membranes for


water desalination and purification are some worth mentioning activities. Developing sensors for various toxic metal ions and volatile organic contamination in water are undertaken in a big way. Technology/ process/product advancements, high-quality publications in internationally renowned journals and a variety of societal initiatives contribute to the institute's distinguishable outputs under this theme. Some of the findings are protected by intellectual property rights, and a few of them are licensed to external parties and are utilized in commercial activities. With this preface, we are pleased to highlight some of the priority works from 2020–21.

अस्वीकृति और एंटीफाउलिंग गुणों के मॉड्यूलन के लिए पॉली (विनाइलिडीन फ्लोराइड) अल्ट्राफिल्ट्रेशन झिल्ली की ग्राफ्टिंग

Grafting of poly(vinylidene fluoride) ultrafiltration membrane for modulation of rejection and antifouling property

यहां, हमने पॉली (विनाइलिडीन फ्लोराइड) (पीवीडीएफ) झिल्ली के सम्मिश्रण घटक के चयनात्मक ग्राफ्टिंग के लिए एक प्रक्रिया और जल के आद्रण व्यवहार और एंटीफाउलिंग गुणों पर आकारिकी वैशिष्टय के प्रभाव को रिपोर्ट किया हैं। पीवीडीएफ के आकारिकी रूप से संशोधित सम्मिश्रण झिल्ली के संपर्क में ऐक्रेलिक एसिड (एए) के बहुलीकरण के फलस्वरूप पीएए श्रृंखलाओं द्वारा सम्मिश्रण घटक की चयनात्मक ग्राफ्टिंग होती है। बहुलीकरण पूरे झिल्ली मैट्रिक्स में ग्राफ्ट सहबहुलक के निर्माण का कारण बनता है। आधार झिल्ली आकारिकी और ग्राफ्टिंग समय झिल्ली के सतह खुरदरापन, पारगम्य प्रवाह और पानी के आद्रण व्यवहार को गहराई से प्रभावित करते हैं। पॉलीएक्रेलिक एसिड द्वारा

Herein, we report a process for the selective grafting of blend component of poly (vinylidene fluoride) (PVDF) membrane and the effect of the morphological feature on the water wetting behaviour and antifouling property. Polymerization of acrylic acid (AA) in contact with a morphologically modified blend membrane of PVDF leads to selective grafting of blend component by PAA chains. Polymerization causes the formation of graft copolymer throughout the membrane matrix. Base membrane morphology and grafting time profoundly influence surface roughness, permeate flux, and water wetting behaviour of the membranes. The molecular weight cut-

चित्रः पॉलीएक्रेलिक एसिड द्वारा पीवीडीएफ झिल्ली की ग्राफ्टिंग प्रदर्शन-चित्रण।

Figure: Illustration showing grafting of PVDF membrane by polyacrylic acid.

पीवीडीएफ झिल्ली के ग्राफ्टिंग के बाद परिणामी झिल्ली का आणिवक भार कट ऑफ (MWCO) 400 kDa से घटकर 100 kDa हो गया। आगे ग्राफ्टिंग समय बढ़ाने से MWCO कम नहीं हुआ। 2-4 घंटे का ग्राफ्टिंग समय अंतराल ऐसी झिल्ली का उत्पादन करता है, जिसमें पृष्ठसक्रियकारक मुक्त और पृष्ठसक्रियकारक स्थिर तेल-में-जल पायस से जल की प्राप्ति के दौरान उच्च तेल अस्वीकृति (> 99.5%), उच्च प्रवाह उगाही अनुपात (> 95%) और कम प्रवाह अल्पता (30-36%) प्राप्त होती है। महत्वपूर्ण लक्ष्य MWCO को सीमित अल्ट्राफिल्ट्रेशन झिल्ली की सीमा में कम करना था। इस दिशा में काम चल रहा है।

off (MWCO) of the resultant membrane decreased from 400 kDa to 100 kDa after grafting of PVDF membrane by polyacrylic acid. Further increasing the grafting time did not reduce the MWCO. The Grafting time window of 2-4 h produces membranes with high oil rejection (>99.5%), high flux recovery ratio (>95%), and low flux reduction (30-36%) during recovery of water from surfactant-free stabilized surfactant oil-in-water emulsions. The important target was to reduce the MWCO in the range to tight ultrafiltration membranes. Thus, work in this direction is going on.

Appl. Surf. Sci. 544 (2021) 148905

वर्धित एकसंयोजी/ द्विसंयोजी आयन चयनात्मकता के लिए आयन एक्सचेंज झिल्ली Anion exchange membrane for increased monovalent/ bivalent ion selectivity

आयन विनिमय झिल्ली (एईएम) इलेक्ट्रोडायलिसिस (ईडी) प्रक्रिया के माध्यम से लवण को हटाने के लिए उपयोगी है। हालांकि, एकसंयोजी (मोनोवैलेंट) और द्विसंयोजी (डाइवैलेंट) आयनों के चयनात्मक पृथक्करण के लिए, विशेष प्रकार के एईएम की आवश्यकता होती है। यहां, हम पॉली (एक्रिलोनाइट्राइल-सह-N-ब्यूटाइल एक्रिलेट-सह-पॉलीडाइमिथाइलएमिनो एथिल मेथाक्रिलेट) (PAN-सह-PnBA-सह-PDMA) टेरपॉलीमर-आधारित क्रॉसलिंक्ड एईएम की निर्माण विधि रिपोर्ट की हैं, जो एकसंयोजी आयन को द्विसंयोजी आयन से ईडी प्रक्रिया द्वारा अलग करने के लिए उपयोगी है। एल्काइल श्रृंखला की लंबाई को बदलकर टेरपोलीमर के क्वाटरनाइज्ड नाइट्रोजन (डीएमए अंशों से) के सूक्ष्मवातावरण की ध्रुवीयता का समंजन करने से अम्ल उगाही के लिए विभिन्न एकसंयोजी के साथ द्विसंयोजी आयनों की चयनात्मकता और पृथक्करण कारक प्राप्त हुए। AEM-TP-C1, AEM-TP-C4 और AEM-TP-C10 (C1 से C10 एल्काइल की लंबाई निरूपित करता है) झिल्ली को टेरपॉलिमर के डीएमए अंशों को क्रॉसलिंकिंग के बाद क्वार्टरीकृत करके तैयार किया गया। ईडी प्रक्रिया के माध्यम से सोडियम क्लोराइड और सोडियम सल्फेट मिश्रण

Anion exchange membrane (AEM) is useful for removing salts via an electrodialysis (ED) process. However, for the selective separation of monovalent and divalent ions, a special type of AEM is required. Herein, we report the preparation of poly(acrylonitrile-co-n-butyl acrylate-co-polydimethylamino methacrylate) (PAN-co-PnBA-co-PDMA) terpolymer-based crosslinked AEMs for the separation of monovalent ion from bivalent ion via the ED process. The tuning of the polarity of the microenvironment quaternized nitrogen (from DMA moieties) of the terpolymer by changing the length of alkyl chain gave membranes with different monovalent to bivalent anions selectivity and separation factor for acid recovery. AEM-TP-C1, AEM-TP-C4, and AEM-TP-C10 (C1 to C10 denote the length of alkyl) membranes were prepared by quaternizing the DMA moieties of the terpolymer followed by crosslinking. The AEM-TP-C10 membrane exhibited the best

(0.01M, 0.01M) के विलवणीकरण के दौरान AEM-TP-C10 झिल्ली ने सर्वश्रेष्ठ चयनात्मकता (4.76) का प्रदर्शन किया गया।

selectivity (4.76) during desalination of sodium chloride and sodium sulfate mixture (0.01 M, 0.01 M) via the ED process.

Journal of Membrane Science, 612 (2020) 118459

विसरण डायलिसिस के माध्यम से अम्ल उगाही के लिए इमिडाजोलियम युक्त क्रॉसलिंक्ड एईएम

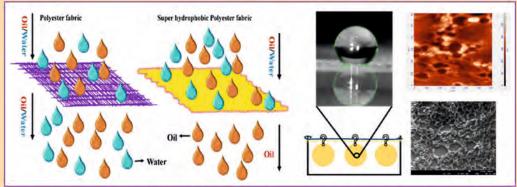
Imidazolium containing crosslinked AEM for acid recovery via diffusion dialysis

एईएम को विसरण डायलिसिस (डीडी) प्रक्रिया के माध्यम से अम्ल उगाही के लिए प्रयोग किया जाता है। हालांकि, अम्ल के उच्च डायलिसिस गुणांक (UH⁺) और पृथक्करण कारक (s) को प्राप्त करने के लिए विशेष रूप से डिज़ाइन किए गए एईएम की आवश्यकता होती है। अम्ल उगाही और धात आयन पृथक्करण के लिए हमारी झिल्ली की रचना जल-फूलाव, संरचनात्मक स्थिरीकरण (क्रॉस-लिंकिंग) और धनायनिक अंश के स्थापन के अनुकूलन पर आधारित है, जहां रिंग सिस्टम (इमिडाज़ोल) में आवेश का डेलोकेलाइज़ेशन संभव है। उपरोक्त डिजाइन के आधार पर. इस कार्य में धातु आयनों और अम्ल (HCI) के पृथक्करण के लिए पॉली (एक्रिलोनिट्राइल) -सह-पॉली (विनाइल इमिडाज़ोल) सहपॉलिमर का उपयोग करके क्रॉस-लिंक्ड एईएम के निर्माण की जानकारी दी गई है। एईएम को सहपॉलीमर के क्वार्टरीकरण और उसके बाद क्रॉस-लिंकिंग द्वारा तैयार किया गया। झिल्ली के प्रदर्शन पर क्वार्टरीकारक (एल्काइल श्रृंखला की लंबाई) और सहपॉलीमर संरचना के प्रभाव का मूल्यांकन किया गया। सहपॉलीमर (AN/ VIm = 75:25 मोल/ मोल) के 1-ब्रोमोब्यूटेन के साथ क्वार्टरीकरण तदोपरांत क्रॉस-लिंकिंग द्वारा तैयार की गई झिल्ली (AEM2-Bu-2) ने अधिकतम अम्ल उगाही (1 M HCI + 0.18 M FeCl, मिश्रण के पृथक्करण के दौरान UH⁺ 0.047 m/h और S मान 130) का प्रदर्शन किया। क्वार्टरीकृत इमिडाज़ोल रिंग धनायनिक आवेश को स्थिरीकरण प्रदान करता है, जो झिल्ली के प्रदर्शन को बढाता है। यह कार्य विसरण डायलिसिस प्रक्रिया के माध्यम से अम्ल उगाही के लिए एक उच्च-प्रदर्शन एईएम डिजाइन

AEM is applied for acid recovery through the diffusion dialysis (DD) process. However, a specially designed AEM is required to achieve a high dialysis coefficient of acid (UH+) and separation factor (S). The design of our membrane for acid recovery and metal ion separation is based on the optimization of water-swelling, structural stabilization (crosslinking) and introduction of cationic moieties where the delocalization of charge in a ring system (imidazole) is possible. Based on the above design, herein, preparation of a crosslinked AEM using a poly (acrylonitrile)-co-poly (vinyl imidazole) copolymer for the separation of metal ions and acid (HCI) is reported. The AEMs have been prepared by quaternization of the copolymer followed by cross-linking. The effect of a quaternizing agent (alkyl chain length) and copolymer composition on the performance of the membranes has been The membrane (AEM2-Bu-2) prepared by the quaternization of the copolymer (AN/ VIm = 75:25 mol/ mol) with 1bromobutane followed by cross-linking exhibits highest acid performance with a UH+ of 0.047 m/h and S value of 130 during the separation of the 1 M HCl + 0.18 M FeCl₂ mixture. The quaternized imidazole ring provides stabilization of the cationic charge, which enhances performance of the membrane. This work provides an insight to design a highperformance AEM for acid recovery through

करने के लिए एक अंतर्दृष्टि प्रदान करता है।

the diffusion dialysis process.


ACS Applied Polymer Material, 3 (2021) 1544-1554

ऑक्टाडेसिल-पॉलीसिलोक्सेन-रेटिकुलेटेड पुनर्चक्रणीय अतिजलविरागी पॉलिएस्टर फैब्रिक द्वारा तत्काल तेल पृथक्करण

An instant oil separation by octadecyl-polysiloxane-reticulated recyclable superhydrophobic polyester fabric

सभी पर्यावरणीय चिंताओं में से, तैलीय अपशिष्ट जल द्वारा जल प्रदुषण यकीनन मानवता के सामने सबसे गंभीर समस्याओं में से एक है। इस सार्वभौमिक चुनौती को प्रभावी तेल-जल पृथक्करण द्वारा हल करने की आवश्यकता है। इस कार्य में, कमल के पत्ते द्वारा प्रेरित एक अतिजलविरागी सामग्री को एकल-चरण डिप-कोटिंग विधि द्वारा पॉलिएस्टर कपड़े पर बहुसंधनन प्रतिक्रियाओं के माध्यम से फ्यूमड सिलिका और ऑक्टाडेसिलट्राईक्लोरोसिलेन के क्रॉस-लिंकिंग द्वारा तैयार किया गया। निर्मित ऑक्टाडेसिल-पॉलीसिलोक्सेन नेटवर्क वाली सिलिका सामग्री अतिजलविरागी व्यवहार प्रदर्शित करती है। AFM और SEM संरचना अध्ययनों ने बड़े पैमाने पर सृक्ष्म संरचना बनाने वाले नैनोस्केल अनुक्रम संरचनाओं को दिखाया, और वे कपड़े के साथ अच्छी तरह से जुड़े हुए थे। दस पृथक्करण चक्रों तक दोहराए जाने के बाद भी एक उच्च तेल (डाइक्लोरोमीथेन) फ्लक्स के साथ उच्च पृथक्करण दक्षता >99.5% प्राप्त हुई।

Among all the environmental concerns, water pollution by oily wastewater is arguably one of the most severe problems facing humanity. This universal challenge needs to be solved by effective oil-water separation. In this work, an excellent water repellent superhydrophobic material inspired by the lotus leaf were prepared by cross-linking of fumed silica and octadecyltrichlorosilane via polycondensation reactions on polyester fabric by a one-step dip-coating method. The constructed octadecyl-polysiloxane networked silica material exhibits superhydrophobic behavior. AFM and SEM morphological studies showed nanoscale hierarchy structures forming largescale microstructures, and they were wellanchored with the fabric. A high oil (dichloromethane) flux with a separation efficiency of high >99.5% was obtained even after repeated use for ten separation cycles.

चित्रः तेल-जल पृथक्करण का एक योजनाबद्ध चित्रण (संपर्क कोण/ एएफएम/ एसईएम सतह तस्वीरें)।

Figure: A schematic depiction of oil-water separation (Contact angle/AFM/SEM Surface photos).

सामग्री ने गुरुत्वाकर्षण के तहत एक तेज़ और प्रभावी तेल-जल पृथक्करण दिखाया और जिसमें समय के साथ उत्कृष्ट स्थिरता है, जो इसे औद्योगिक तैलीय अपशिष्ट जल के उपचार के लिए एक आदर्श विकल्प बनाती है। The material showed a fast and effective oil—water separation under gravity and has excellent stability over time, which makes it an ideal option for treating industrial oily wastewater.

Environmental Technology & Innovation 21 (2021) 101322

जल उपचार के लिए त्रिआयामी आकार में पुन: प्रयोज्य, क्रॉसलिंक्ड मेटलोपॉलीमेरिक नेटवर्क

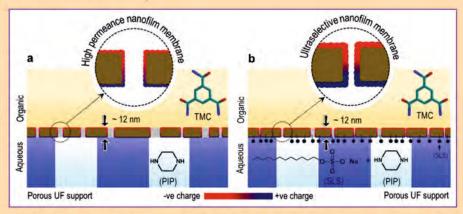
Reusable, crosslinked metallopolymeric network in three dimensional shape for water remediation

दूषित पानी से फ्लोराइड को हटाने के लिए रंद्रित बनावट के साथ त्रि-आयामी आकार में पॉली (ज़रकोनिल डाइमेथाक्रिलेट-सह-लॉरिल मेथाक्रिलेट) के सहपॉलिमेरिक नेटवर्क की श्रृंखला निर्मित की गयी। विकसित अधिशोषक के प्रदर्शन की जांच करने के लिए विभिन्न प्रयोगात्मक कारकों, जैसे, अधिशोषक की मात्रा के प्रभाव, फ्लोराइड की फ़ीड सांद्रता, pH, pHpzc और व्यतिकारक आयनों का अध्ययन किया गया। फ्लोराइड के लिए अधिकतम अधिशोषण क्षमता 19.8 मि.ग्रा./ ग्रा. (pH 7.0 ± 0.2, प्रारंभिक F सांद्रता: 10 मि.ग्रा./ ग्रा. और खुराक: 0.5 ग्रा./ली.) के साथ प्राप्त प्रयोगिक आंकड़े फ्रायंडलिच और लैंग्मुइर अधिशोषण आइसोथर्म मॉडल में सबसे अच्छी तरह से फिट होते हैं। अभिक्रिया गतिकी और उष्मागतिकी मापदंडों (ΔG, ΔH, और ΔS) की भी जांच की जाती है।

Series of copolymeric network of poly (zirconyl dimethacrylate-co-lauryl acrylate) is fabricated in three-dimensional shape with porous texture for the removal of fluoride from contaminated water. To investigate the performance of developed adsorbent various experimental factors, i.e., the effect of adsorbent's dose, feed concentration of fluoride, pH, pHpzc, and interfering ions, were studied. Freundlich and Langmuir adsorption isotherm models are best fitted with the obtained experimental data with the maximum adsorption capacity for fluoride as 19.8 mg g^{-1} (pH 7.0 ± 0.2, initial F- concentration: 10 mg L-1 and dose: 0.5 g L-1). The kinetics and thermodynamic parameters $(\Delta G, \Delta H, \text{ and } \Delta S)$ are also investigated.

चित्र: पानी से फ्लोराइड के शमन के लिए मेटल पॉलिमेरिक अधिशोषक की योजनाबद्ध प्रस्तृति।

Figure: schematic presentation of metal polymeric adsorbent for mitigation of fluoride from water.


Environmental Science and Pollution Research, 28 (2021) 19166-19178

आयनिक और आणविक नैनोफिल्ट्रेशन के लिए अल्ट्रासेक्लेक्टिव पॉलियामाइड नैनोफिल्म कम्पोजिट मेम्ब्रेन

Ultraselective polyamide nanofilm composite membranes for ionic and molecular nanofiltration

पानी के विलवणीकरण में वर्धित उगाही और प्रक्रिया दक्षता के साथ उच्च गुणवत्ता वाले परिणामी जल का उत्पादन करने के लिए अतिचयनात्मक झिल्ली की आवश्यकता होती है। पॉलिएमाइड नैनोफिल्म संमिश्र नैनोफिल्ट्रेशन मेम्ब्रेन को प्रतिक्रिया के अभिक्रिया गतिकी के भली प्रकार नियंत्रण के द्वारा इंटरफेस पर स्टॉकियोमेटिक संतलन को बनाए रखते हुए इंटरफेसियल बहुलीकरण के माध्यम से विकसित किया गया। जलीय अवस्था में सोडियम डोडेसिल सल्फेट (एसएलएस) को मिलाकर अमीन एकलकों विसरणशीलता को नियंत्रित किया गया। नैनोफिल्म्स को क्रॉसलिंकिंग की एक नियंत्रित सीमा के साथ डिजाइन किया गया और पानी की पारगम्यता बढाने के लिए ≈7 नैनोमीटर जितना पतला बनाया गया। अतिचयनात्मक झिल्लियों ने >99.9% द्विसंयोजक लवण (Na₂SO₄) की अस्वीकृति प्रदर्शित की और >1000 की एक-संयोजी से द्वि-संयोजी आयन चयनात्मकता का प्रदर्शन किया। इन नैनोफिल्म संमिश्र झिल्लियों की चयनात्मकता अत्याध्निक

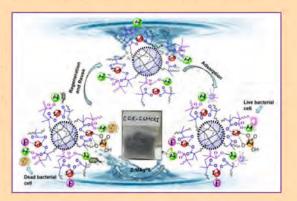
Ultraselective membranes are needed to produce high-quality product water with increased recovery and process efficiency in water desalination. Polyamide nanofilm composite nanofiltration membranes were developed via interfacial polymerization by precisely controlling the kinetics of the reaction by maintaining the stoichiometric equilibrium at the interface. The diffusivity of the amine monomers was controlled with the addition of sodium dodecyl sulfate (SLS) in the aqueous phase. Nanofilms were designed with a controlled degree of crosslinking and made as thin as ≈7 nm to achieve increased water permeance. The ultraselective membranes exhibited >99.9% rejection of divalent salt (Na₂SO₄) and demonstrate monovalent to divalent ion selectivity of >1000. The selectivity of these nanofilm composite membranes is beyond the permeance-

चित्र: अल्ट्राफिल्ट्रेशन अवलंब पर पॉलियामाइड नैनोफिल्म के गठन की योजनाबद्ध प्रस्तुति। (ए) एसएलएस के बिना (बी) एसएलएस के साथ।

Figure: Schematic presentation of the formation of polyamide nanofilm on top of ultrafiltration support. (a) without SLS (b) with SLS.

नेनोफिल्ट्रेशन झिल्लियों की पारगम्यता-चयनात्मकता ऊपरी-बाध्य रेखा से भी अधिक है और व्यावसायिक रूप से उपलब्ध झिल्लियों की तुलना में एक से दो परिमाणक्रम अधिक हैं। selectivity upper-bound line of the state-ofthe-art nanofiltration membranes and one to two orders of magnitude higher than the commercially available membranes.

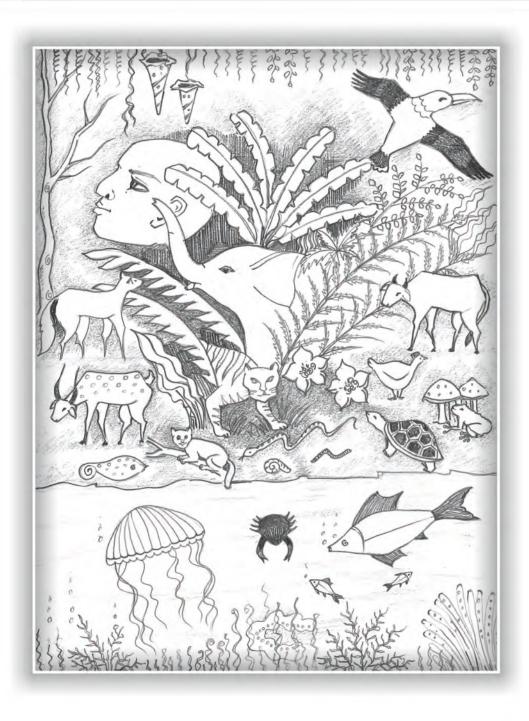
Adv. Mater. Interfaces, 31 (2021) 2007054


जल उपचार के लिए पुनः-प्रयोज्य, रंध्रित द्वि-धातुपॉलीमेरिक नेटवर्क Reusable, Porous bi-metallopolymeric network for water remediation

पानी से आर्सेनिक, फ्लोराइड और बैक्टीरिया निकालने के लिए त्रि-आयामी, रंध्रित (पोरस) संरचना में धात्विक-बहुलक नेटवर्क (ZrMAgO) बनाने के लिए नया दृष्टिकोण अपनाया गया। ZrMAgO बहुलक आधार पर ज़रकोनियम और सिल्वर जड़े होने से बना है। बहुलक नेटवर्क की श्रृंखला अलग-अलग एकलकों के संयोजन द्वारा तैयार की गई। अधिकतम अधिशोषण क्षमता (qmax) क्रमशः F और As(V) के लिए 64 मिलीग्राम प्रति ग्राम तथा 1.75 मिलीग्राम प्रति ग्राम (pH: 7.0±0.2, प्रारंभिक F-: 50 mg L-1, As(V):1.0 mgL⁻¹ तथा खुराक: 0.5 gL⁻¹) प्राप्त हुई। डीआरके आइसोथर्म वक्र मॉडल द्वारा माध्य मुक्त ऊर्जा (-2.13 kJmol⁻¹ और -7 kJmol⁻¹) के नकारात्मक मान गणना की गई तथा बंधन ऊर्जा (-834 kJ mol⁻¹ और -549 kJ mol⁻¹ क्रमशः F⁻ और As (V) के लिए) की गणना घनत्व फन्क्शनल सिद्धांत (DFT) द्वारा की गई, जो परमाण् और आणविक स्तरों पर अच्छे भौतिक संपर्क को दर्शाता है। ZrMAgO के कीटाणुशोधन व्यवहार की जांच ग्राम-पॉजिटिव

Novel approach is utilized to fabricate porous metallo-polymeric network (ZrMAgO) in threedimensional architecture to encounter arsenic, fluoride, and bacteria from water. The ZrMAgO is consisting of intact zirconium and silver in the polymer backbone. Series of polymeric network is prepared by varying monomer composition. The highest adsorption capacities (qmax) were obtained as 64 mgg and 1.75 mgg for F and As(V) respectively (pH: 7.0±0.2, initial F-: 50 mgL-1, As(V):1.0 mgL⁻¹ and dose: 0.5 gL⁻¹). The negative values of mean free energies (-2.13 kJmol⁻¹ and -7 kJmol⁻¹) calculated from DRK isotherm model and binding energies (-834 kJ mol-1 and -549 kJ mol-1) calculated by density functional theory (DFT), for F and As(V) respectively supports good interactions at atomic and molecular levels. The disinfection behavior of ZrMAgO was examined against both Gram-positive and

चित्रः पानी से विषाक्त आयनों के शमन के लिए धातुपॉलिमेरिक अधिशोषण की योजनाबद्ध प्रस्तुति।


Figure: Schematic presentation of metallpolymeric adsorbent for mitigation of toxic ions from water.

और ग्राम-नेगेटिव (एंटरोबैक्टर हॉर्मेचेई, बैसिलस मेगाटेरियम और बैसिलस बैटाविएंसिस) दोनों प्रकार के बैक्टीरिया के खिलाफ की गई। ZrMAgO की अनूठी संरचनात्मक समग्रता न केवल विषाक्त आयनों और बैक्टीरिया के एक साथ निष्कासन के लिए क्षमता प्रदान करती है अपितु इसकी पुन: प्रयोज्य क्षमता के कारण जल शोधन में होने वाले द्वितीयक प्रदूषण से भी बचाती है।

Gram-negative bacteria (Enterobacter hormaechei, Bacillus megaterium, and Bacillus bataviensis). The unique structural integrity of ZrMAgO is offering potentiality not only for the synchronous removal of hazardous ions and bacteria but also for high re-usability by avoiding the secondary pollution for water purification.

Journal of Environmental Chemical Engineering, 9 (2021) 105356.

Painting by...

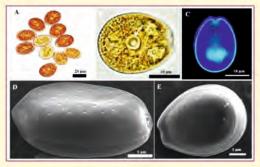
सुश्री एकता साहा Ms. Ekata Saha

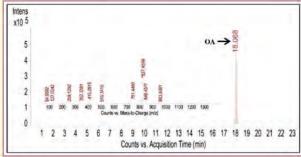
शैवाल प्रोद्योगिकियाँ

Algal Technologies

भारत में समुद्री शैवाल के लिए लगभग 7500 किमी समुद्र तट उपलब्ध है। समुद्री शैवाल भारतीय तटों पर तमिलनाडु और गुजरात तटों के साथ-साथ लक्षद्वीप और अंडमान और निकोबार द्वीप समूह के आसपास उगाए गए हैं। भारत में समुद्री शैवाल की लगभग 840 प्रजातियाँ प्राकृतिक रूप से पाई जाती हैं, जिनमें से लगभग 30 प्रजातियाँ आर्थिक रूप से महत्वपूर्ण/ अन्वेषित हैं। सीएसआईआर-सीएसएमसीआरआई ने मुख्य रूप से अपने विभिन्न प्रवर्तमान मूल्य संवर्धन कार्यक्रमों के तहत भारतीय समुद्री शैवाल बायोमास के मुल्यवर्धन पर ध्यान केंद्रित किया है। सीएसआईआर-सीएसएमसीआरआई के पास समुद्री शैवाल की खेती में विशेषज्ञता है और भारत में समुद्री शैवाल उद्योगों की कच्चे माल की मांग को पूरा करने के लिए वाणिज्यिक समुद्री शैवाल प्रजातियों (जैसे गैलिडिएला एसपीपी, ग्रेसिलेरिया एसपीपी, *कप्पाफाइकस अल्वारेज़ी*, आदि) के लिए कई कृषि प्रौद्योगिकियों को विकसित किया गया है। समय के साथ, सीएसआईआर-सीएसएमसीआरआई ने समुद्री शैवाल बायोमास के डाउनस्ट्रीम प्रसंस्करण में विशेषज्ञता विकसित की है और समुद्री शैवाल उत्पादों जैसे कि अगर, अगारोज, कैरेजेनन, एल्जिनेट, बायोस्टिम्लेंट्स आदि के वाणिज्यिक उत्पादन के लिए वर्धित स्तर की प्रक्रिएं विकसित की है। इन स्वदेशी प्रक्रियाओं में से 18 से अधिक को वाणिजियक उत्पादन के लिए उद्योगों को स्थानांतरित किया गया है। सीएसआईआर-सीएसएमसीआरआई द्वारा विकसित ये प्रौद्योगिकियां भारत में समुद्री शैवाल की खेती के माध्यम से तटीय आबादी और युवा पीढ़ी को समुद्री शैवाल उद्योगों के माध्यम से रोजगार प्रदान कर रहे हैं। ये प्रौद्योगिकियां सस्ते आयात विकल्प प्रदान करती हैं और भारत सरकार के "मेक इन इंडिया" के नारे को पूरा करती हैं। "शैवाल प्रौद्योगिकी" विषय पर हमारी गतिविधियों के इस संक्षिप्त सारांश के साथ, हमें 2020-21 में इस विषय पर किए गए कुछ महत्वपूर्ण कार्यों पर प्रकाश डालते हुए खुशी हो रही है।

India has about 7500 km coastline available for seaweeds. The seaweed has been grown along the Indian coast including Tamil Nadu and Gujarat coasts as well as around Lakshadweep and Andaman and Nicobar Islands. In India, about 840 seaweed species are found growing naturally, of which approximately 30 species are economically important/ explored. CSIR-CSMCRI mainly focused on the value addition of Indian seaweed biomass under its various ongoing value addition programs. CSIR-CSMCRI has expertise in seaweed cultivation and several cultivation technologies for the commercial seaweed species (e.g. Gelidiella spp., Gracilaria spp., Kappaphycus alvarezii, etc.) has been developed to fulfill the raw materials demands of seaweed industries in India. Over the time, CSIR-CSMCRI has also developed expertise in downstream processing of seaweed biomass and scaling-up the processes for commercial production of seaweed products such as agar, agarose, carrageenan, alginate, biostimulants, etc. More than 18 of these indigenous processes have been transferred to industries for commercial production. These technologies developed by CSIR-CSMCRI is providing employment to the coastal population through seaweed farming and to the young generation through seaweed industries in India. These technologies provide inexpensive import substitutes and fulfil




the slogan of the Government of India "Make in India". With this brief summary of our activities on the topic "Algal Technologies", we are delighted to highlight some of the important work we have done on this topic in 2020-21.

प्रोरोसेंट्रम लीमा के एक भारतीय प्रभेद की विस्तृत पहचान और इसके विष का लक्षण वर्णन Detail identification of an Indian strain of Prorocentrum lima and characterization of its toxin

प्रोरोसेंट्रम लीमा (CSIRCSMCRI005) का एक प्रभेद A थोनिथुराई, तमिलनाडु, भारत के तटीय समुद्री जल से पृथक किया गया। पी. लीमा एक बेंथिक डाइनोफ्लैजिलेट है और हानिकारक शैवाल कोंपल (एचएबी) के रूप में रिपोर्ट किया गया है। प्रकाश माइक्रोस्कोपी (एलएम) और स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी (एसईएम) का उपयोग करके पृथक इस्तेक्ट्रॉन माइक्रोस्कोपी (एसईएम) का उपयोग करके पृथक प्रभेद की संरचनात्मक विशेषताओं का अध्ययन किया गया। आंतरिक ट्रॉस्क्राइब्ड स्पेसर क्षेत्र (ITS1-5.8s-ITS2), 18S in FDNA, और बड़े सबयूनिट (LSU) rDNA के प्राइलोजेनेटिक विश्लेषण भी किए गए। विभिन्न तापमान पर पिस्थितियों के तहत अध्ययन किया गया। विकास दर (µ) to 0.05 div दिन प्राप्त हुई। ओकाडाइक अम्ल (OA) के

strain Prorocentrum (CSIRCSMCRI005) was isolated from the coastal seawater of Thonithurai, Tamil Nadu, India. P. lima is a benthic dinoflagellate and reported as harmful algal blooms (HABs). Morphological characteristics of the isolated strain were studied using light microscopy (LM) and scanning electron microscopy (SEM). The phylogenetic analyses of the internal transcribed spacer region (ITS1-5.8s-ITS2), 18S rDNA, and large subunit (LSU) rDNA were also carried out. Growth rate and generation under different biomass temperature regime were studied under laboratory condition. The growth rate (µ) was 0.05 div. day-1. Okadaic acid (OA) production

चित्र: ए) पी. लीमा (CSIRCSMCRI005) का एलएम, प्रतिदीप्ति माइक्रोस्कोपी और स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी (एसईएम) के द्वारा आकारिकी अध्ययन। ख) इलेक्ट्रोस्प्रे आयनीकरण के पॉजीटिव स्कैन मोड में पी. लीमा (CSIRCSMCRI005) द्वारा निर्मित 10.8 µg mL¹ OA [M+NA] संदिग्ध डीएसपी यौगिकों का एलसी-एचआर-एमएस आयन क्रोमैटोग्राम।

Figure: a) Morphology study of P. lima (CSIRCSMCRI 005) under LM, Fluorescence Microscopy and Scanning Electron Microscopy (SEM). b) LC-HR-MS Ion chromatogram of suspected DSP compounds 10.8 μ g mL⁻¹ OA [M+NA]⁺ produced by P. lima (CSIRCSMCRI 005) in positive scan mode of electrospray ionization.

उत्पादन का इलेक्ट्रोस्प्रे आयनीकरण और चतुर्ध्रवीय टाइम-ऑफ-फ्लाइट मास स्पेक्ट्रोस्कोपी से लैस तरल क्रोमैटोग्राफी (LC-ESI-Q-ToF-MS) के उपयोग द्वारा जांच की गई। आकारिकी विशेषताओं को एक चौड़े मध्य क्षेत्र के साथ अंडाकार कोशिका आकार के रूप में दर्ज किया गया. संकीर्ण अग्रभाग और गोल पश्चभाग, स्टार्च कोश के साथ बड़े केंद्रीय पाइरेनॉइड, चिकनी थीकल सतह, और वी-आकार का पेरिफ्लैगेलर क्षेत्र जिसमें आठ प्लेटलेट्स हैं जो कि प्रजातियों के विवरण के साथ मेल खाते हैं और जिनकी सूचना अन्यत्र दी गई है। ITS, 18S, और LSU अनुक्रम फ़ाइलोजेनेटिक विश्लेषण से पता चला कि आइसोलेट प्रशांत से रिपोर्ट किए गए अन्य उपभेदों से प्रनिकटता से संबंधित था। मुक्त और कुल OA का उत्पादन क्रमशः 20.12±4.77 और 22.30 fg सेल 1 था। इस अध्ययन के निष्कर्ष पी. लीमा की विषाक्त क्षमता और उत्तर पूर्व हिंद महासागर में डायरिया शेलिफश विषाक्तता के क्षेत्रीय जोखिम के संबंध में उपयोगी जानकारी का योगदान करते हैं। इस प्रभेद के इकोफिजियोलॉजी पर आगे के अध्ययन मददगार होंगे।

was examined using liquid chromatography equipped with electrospray ionization and quadrupole time-of-flight mass spectroscopy (LC-ESI-Q-ToF-MS). Morphological features were recorded as oval cell shape with a broad middle region, narrow anterior and round posterior end, large central pyrenoid with starch sheath, smooth thecal surface, and Vshaped paraflagellar area consisting of eight platelets matched with the description of the type species and those reported elsewhere. The ITS, 18S, and LSU sequence phylogenetic analysis revealed that the isolate was closely related to other strains reported from the pacific. The production of free and total OA was 20.12±4.77 and 22.30 fg cell-1, respectively. The findings of this study contribute useful information regarding the toxic potential of P. lima and concerning the regional risk of diarrheic shellfish poisoning in the North East Indian Ocean. Further studies on the ecophysiology of this strain will be helpful.

Toxicon, 196 (2021) 32-43

ग्रेसिलेरिया डेबिलिस की वृद्धि पर एएमपीईपी का प्रभाव Impact of AMPEP on the growth of Gracilaria debilis

एएमपीईपी (एस्कोफिलममरीन प्लांट एक्सट्रेक्ट पाउडर) उपचार का बाढ़, जैवरासायनिक घटकों, नाइट्रेट रिडक्टेस एंजाइम गतिविधि और ग्रेसिलेरिया डेबिलिस के विभिन्न रंग प्रभेदों के अगर गुणों पर प्रभाव का विश्लेषण किया गया। हरे और लाल रंग के दो प्रभेदों ने नियंत्रण पौधों (अनुपचारित पौधों) की तुलना में उच्च बाढ़ दर, वर्णक मात्रा, प्रोटीन मात्रा, कार्बोहाइड्रेट, फिनोल मात्रा और नाइट्रेट रिडक्टेस एंजाइम गतिविधि को दिखाया। लाल प्रभेद ने AMPEP (0.01%) की कम सांद्रता पर उपरोक्त मापदंडों का अधिकतम मान दिखाया, जबिक हरे रंग ने उच्च सांद्रता (0.05%) में उच्च NR गतिविधि दिखाई।

The impact of AMPEP (Ascophyllum Marine Plant Extract Powder) treatment on the growth, biochemical components, nitrate reductase enzyme activity and agar properties of different color strains of *Gracilaria debilis* were analysed. Both green and red color strains showed higher growth rate, pigment contents, protein contents, carbohydrates, phenol content and nitrate reductase enzyme activity than control plants (untreated plants). The red strain showed a maximum values of above parameters at lower concentration of AMPEP (0.01%) whereas green showed higher NR activity in higher concentration (0.05%).

चित्र: पूरी तरह से विकसित ग्रेसिलेरिया डेबिलिस (0.01% AMPEP उपचारित पौधे)।

Figure: Fully grown Gracilaria debilis (0.01% AMPEP treated plants).

वाणिज्यिक पौध उत्पादन के लिए अंकुर की लंबाई का अनुकूलन Optimization of seedling length for commercial seedling production

ग्रेसिलेरिया डेबिलिस के बड़े पैमाने पर व्यावसायिक उत्पादन के लिए पौध स्टॉक के लिए अंकुर आकार को, 0.5 सेमी से 3.5 सेमी की लंबाई 0.5 सेमी के अंतराल पर, विभिन्न आकार के अंकुरों (शैवाल ऊतक जिसमें एपिकल कोशिकाएं होती हैं) को प्रयोगशाला परिस्थितियों में साठ दिनों के लिए खेती करके मानकीकृत किया गया। साठ दिनों के बाद, इसे खेत में स्थानांतरित कर दिया गया और नेट बैग विधि द्वारा खुले समुद्र में संवर्धित किया गया। 1.5 सेमी, 2 सेमी और 3 सेमी अंकुर ने अन्य रोपों की तुलना में उच्च विकास दर दिखाई और वर्धित स्तर प्रक्रिया के लिए आदर्श पाया गया। Seedlings size for seed stock for large scale commercial production of *Gracilaria debilis* was standardized by culturing different sized seedling (algal tissue which having apical cells) with length of 0.5 cm to 3.5 cm at an interval of 0.5 cm under laboratory conditions for sixty days. After sixty days, it was transferred to the field and cultured in the open sea by net bag method. 1.5 cm, 2cm and 3cm seedling showed a higher growth rate than other seedlings and were found ideal for scaled up process.

चित्र: प्रयोगशाला परिस्थितियों के तहत 60 दिनों में पूर्ण विकसित अंकुर (3 सेमी आकार)।

Figure: Fully grown seedlings (3cm size) in 60 days growth under laboratory conditions.

विभिन्न भौतिक रासायनिक परिस्थितियों के तहत ग्रेसिलेरिया ड्यूरा (रोडोफाइटा) में अंकुर पुनर्जनन के लिए कृत्रिम न्यूरल नेटवर्क मॉडलिंग

Artificial neural network modelling for seedling regeneration in *Gracilaria dura* (Rhodophyta) under diferent physiochemical conditions

अभिनव उत्पादों के विकास, विभिन्न विपणन रणनीतियों के साथ-साथ नए उद्यमियों और निवेशकों को आकर्षित करने

Agarophytic seaweeds have assumed prominence recently due to the development of innovative products and different

के कारण एग्रोफाइटिक समुद्री शैवाल ने हाल ही में प्रमुखता हासिल की है। अनेक घरेलू प्रजातियाँ प्रमुखता से उभरी हैं जो उपयुक्त रूप से क्षेत्रीय अगर व्यापर का समर्थन करती हैं। ग्रेसिलेरिया ड्यूरा एक ऐसा ही उदाहरण है और इसकी व्यावसायिक खेती को स्थानीय भारतीय मछुआरों ने अपनी आजीविका के विविधीकरण के लिए अपनाया है। इस काम में क्लोनल पौध में सटीक पुनर्जनन रणनीति प्राप्त करने के लिए लवणता, तापमान, मीडिया संद्रता और वजन के सापेक्ष मात्रा अनुपात को एक केंद्रित दृष्टिकोण के तहत संयुक्त कृत्रिम तंत्रिका नेटवर्क (एएनएन) मॉडल, कण झुंड अनुकूलन (पीएसओ) के साथ-साथ प्रतिक्रिया सतह पद्धति (आरएसएम) द्वारा अनुकूलित किया गया। 4-16-1 की एएनएन टोपोलॉजी और छिपी हुई परत के लिए स्पर्शरेखा-सिग्मोइडल ट्रांसफर फ़ंक्शन और आउटपूट परत के संयोजन के लिए रैखिक फ़ंक्शन 0.991 के अधिकतम आर-मान के साथ इष्टतम पाया गया। अनुकृलित एएनएन मॉडल को पीएसओ टूल के साथ एक फीटनेस फ़ंक्शन के रूप में नियोजित करने पर, इष्टतम भौतिक रासायनिक कारक 27 पीपीटी लवणता, 25 डिग्री सेल्सियस, 2.19 g L-1 डीएपी और 303 mL मीडिया आयतन थे। इसके अलावा, एएनएन मॉडल के परिणामों को प्रयोगात्मक रूप से मान्य किया गया था और 33.54±6.36% पुनर्जनन देखा गया। एएनएन-पीएसओ और आरएसएम द्वारा इष्टतम पुनर्जनन दर में पूर्वानुमान त्रुटि क्रमशः 1.25% और 13.75% थी। अध्ययन ने सिस्टम की गैर-रैखिकता को हल करने में संयुक्त एएनएन-पीएसओ पद्धति की प्रभावशीलता का प्रदर्शन किया।

marketing strategies as well as attracting new entrepreneurs and investors. Several domestic species have emerged as key player's aptly supporting regional agar trade. Gracilaria dura is one such example and its commercial farming has been adopted by local Indian fisherman for diversification of their livelihood. In this work a data centric approach by adopting a combined artificial neural network (ANN) model, particle swarm optimization (PSO) as well as response surface methodology (RSM) to optimize salinity, temperature, media concentration and weight to volume ratio to derive an accurate regeneration strategy in clonal seedlings. ANN topology of 4-16-1 and the combination of the tangent-sigmoidal transfer function for hidden layer and linear function for output layer was found to be optimal with a maximum R-value of 0.991. On employing the optimized ANN model as a fitness function with PSO tool, the optimal physiochemical factors were 27 PPT salinity, 25°C, 2.19 g L-1 DAP and 303 mL media volume. Further, the results of ANN model experimentally validated 33.54±6.36% regeneration was observed. The prediction error in optimum regeneration rate by the ANN-PSO and RSM were 1.25% and 13.75%, respectively. The study demonstrated the efficacy of combined ANN-PSO method in solving the nonlinearity of the system.

Plant Cell, Tissue and Organ Culture 143 (2020) 583-591

सैप, अर्द्ध-रिफाइंड कैरेजेनन और अगर जैसे मूल्य वर्धित उत्पादों के उत्पादन के लिए डाउनस्ट्रीम प्रोसेसिंग प्लांट की स्थापना

Establishing of downstream processing plant to produce value added products like sap, semi-refined carrageenan and agar

तमिलनाडु राज्य मत्स्य पालन द्वारा प्रायोजित परियोजना के तहत, मंडपम में समुद्री शैवाल से मूल्य वर्धित उत्पादों जैसे सैप, अर्ध-परिष्कृत कैरेजेनन, और अगर का उत्पादन करने

Under the sponsored project by the Tamil Nadu State Fisheries, technical specifications of various equipment for establishing a

के लिए सूखे खरपतवार के 0.25 टीपीडी प्रसंस्करण की क्षमता वाले डाउनस्ट्रीम प्रसंस्करण संयंत्र की स्थापना के लिए विभिन्न उपकरणों की तकनीकी विशिष्टताओं को अंतिम रूप दिया गया और चालू किया गया। आगे ट्रायल रन करने के लिए जरूरियात पर कार्य जारी है।

downstream processing plant having a capacity of 0.25 TPD processing of dry weed to produce value added products like sap, semi-refined carrageenan, and agar from seaweeds at Mandapam, were finalized and commissioned. Further needful to conduct a trial run is in progress.

चित्र: कोल्ड रूम की सफल कमीशनिंग (> 700 लीटर क्षमता की तरल होल्डिंग, -25°C का डिजाइन तापमान)। Figure: Successful commissioning of Cold Room (liquid holding of > 700 L capacity, design temperature of -25°C).

Agriculture

देश के सकल मुल्यवर्धन (जीवीए) में कृषि और संबद्ध क्षेत्रों की हिस्सेदारी वर्ष 2019-20 के लिए 17.8% है और यह भारत के लगभग आधे कार्यबल (आर्थिक सर्वेक्षण, भारत सरकार, 2020-2021) को रोजगार देता है। 2019-20 के दौरान देश में कुल खाद्यान्न उत्पादन रिकॉर्ड 296.65 मिलियन टन होने का अनुमान है (आर्थिक सर्वेक्षण, भारत सरकार, 2020-2021)। भारत के विकास को ग्रामीण क्षेत्रों के विकास के बिना प्राप्त नहीं किया जा सकता है जो महत्वपूर्ण रूप से कृषि पर निर्भर हैं। कृषि उत्पादन के लिए विभिन्न बाधाओं में, अजैविक तनाव (लवणता और सुखा) एक प्रमुख कारक है। सीएसआईआर-सीएसएमसीआरआई कृषि के क्षेत्र में लाभदायक और पर्यावरण के अनुकूल दृष्टिकोण के लिए कई दशकों से काम कर रहा है। ट्रांसजेनिक और नमक-सहिष्णु पौधों के विकास को बढ़ावा देने वाले राइजोबैक्टीरिया के प्रयोग के माध्यम से फसल पौधों में लवणता-सहिष्णुता का विकास केन्द्र में रहा है। सीएसआईआर-सीएसएमसीआरआई समुद्री शैवाल की खेती के माध्यम से रोजगार पैदा करके तटीय आबादी की आय में वृद्धि में भी शामिल है और साथ ही संस्थान फसल उपज की मात्रा और गुणवत्ता में वृद्धि के लिए समुद्री शैवाल पर आधारित मूल्य वर्धित उत्पादों (जैव-उत्तेजक) के उत्पादन में भी सक्रिय रूप से लगा हुआ है। हाल के समय में, संस्थान ने अजैविक तनाव प्रबंधन (तंत्र, कार्यात्मक जीनोमिक्स, प्रोटिओमिक्स, मेटाबोलामिक्स आदि), पादप ऊतक संवर्धन, रोगाणुओं के बायोप्रोस्पेक्टिंग, मूल्य वर्धित उत्पादों, बायोसेंसर, समुद्री शैवाल-आधारित जैव उत्तेजक और फ़ीड एडिटिव्स का विकास, समुद्री जल आधारित कृषि/ तटीय लवणीय मिट्टी का पुनर्वास आदि पर उन्नत ज्ञान और नवाचार उत्पन्न किए हैं। संस्थान समुद्री शैवाल की खेती, पादप ऊतक संवर्धन और जीन प्रौद्योगिकियों और मुदा स्वारथ्य प्रबंधन के लिए मिट्टी और जल परीक्षण पर प्रशिक्षण भी प्रदान कर रहा है। इस संक्षिप्त अवलोकन के साथ, हमें कृषि विषय के तहत 2020-21 के दौरान किए गए प्रमुख कार्यों को प्रस्तृत करते हुए खुशी हो रही है।

The share of agriculture and allied sectors in the gross value addition (GVA) of the country is 17.8% for the year 2019-20 and it employs almost half of India's workforce (Economic survey, GoI, 2020-2021). The total food grain production in the country has been estimated at a record 296.65 million tonnes during 2019-20 (Economic survey, GoI, 2020-2021). The development of India cannot be realized without the development of the rural sectors which crucially depend on agriculture. Among different constraints for agricultural production, abiotic stress (salinity and drought) is a major contributor. CSIR-CSMCRI has been working for several decades in the field of agriculture for profitable and eco-friendly approaches. Development of salinity-tolerance in the crop plants through applying transgenic and salt-tolerant plant growth-promoting rhizobacteria has been on focus. CSIR-CSMCRI is also involved in the enhancement of income of the coastal population by generating employment through seaweed cultivation and simultaneously the institute is actively engaged in the production of value-added products (biostimulant) based on seaweed for enhancement of quality and quantity of crop

production. In the recent time, the institute has generated advanced knowledge and innovations in abiotic stress management (mechanism, functional genomics, proteomics, metabolomics etc.), plant tissue culture, bioprospecting of microbes, value-added products, biosensors, development of seaweed-based bio-stimulant and feed additives, seawater based agriculture/ rehabilitation of coastal saline soils. Institute is also providing training on seaweed cultivation, plant tissue culture and gene technologies, and soil and water testing for soil health management. With this concise overview, we are delighted to present the salient work undertaken during 2020-21 under the agriculture theme.

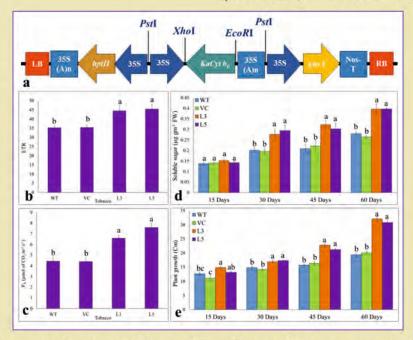
चिटोसन आधारित सतत रिलीज उर्वरक फॉर्मूलेशन का प्रभावशीलता परीक्षण Efficacy trials of chitosan based sustained release fertilizer formulations

चिटोसन आधारित नैनो-फॉर्मूलेशन विकसित किया गया जिसे पोटेशियम और यूरिया जैसे विभिन्न उर्वरकों के साथ शामिल किया गया। नैनोकणों (सीएस-जी-पीएमएए) के साथ-साथ इसके पोटेशियम निगमित रूप (सीएस-जी-पीएमएए-KCI) दोनों का लक्षण वर्णन किया गया और उनके संश्लेषण को पूरी तरह से यादूच्छिक रचना में मक्का के साथ पॉट परिक्षण के लिए वर्धित किया गया, जिसमें आठ उपचार शामिल किए गए। पौधों की ऊंचाई, परिधि, बायोमास संचय के साथ-साथ पोषक तत्वों के अवशोषण जैसे विभिन्न विकास मानकों का अध्ययन किया गया। इसके अलावा मिट्टी के भौतिक-रासायनिक के साथ-साथ जैव रासायनिक मापदंडों का भी मूल्यांकन किया गया। सीएस-जी-पीएमएए और सीएस-जी-पीएमएए-KCI के साथ संशोधित मिट्टी के जल प्रतिधारण व्यवहार का परीक्षण किया गया। विभिन्न उपचारों में, 75% सीएस-जी-पीएमएए-KCI और 50% सीएस-जी-पीएमएए-KCI के साथ संशोधित मिड्डी ने नियंत्रण (अकार्बनिक N, P, K) की तुलना में ताजा और साथ ही शुष्क बायोमास संचय में क्रमशः 50 और 30% की वृद्धि दिखाई। इसके अलावा, इन उपचारों ने अन्य उपचारों के तुलना में बढ़ी हुई N अपटेक, जिसे ग्लूकोसिडेज़ गतिविधि द्वारा मापा गया, के साथ-साथ कार्बन साइकलिंग गतिविधि को भी दिखाया। इसके अलावा नैनो-फॉर्मूलेशन उपचारों में उच्च माइक्रोबियल गतिविधि, जैसा कि एक बढ़ी हुई एफडीए

Chitosan-based nano-formulation was developed which was incorporated with different fertilizers such as potassium and urea. Both the nanoparticles (CS-g-PMAA) as well as their potassium incorporated form (CSg-PMAA-KCI) were characterized and their synthesis was scaled up for pot trial with maize in a completely randomized design consisting of eight treatments. Various growth parameters such as plant height, girth, biomass accumulation as well as nutrient uptake were studied. In addition, soil physicochemical as well as biochemical parameters were also evaluated. Water retention behavior of the soil amended with CS-g-PMAA and CS-g-PMAA-KCI was tested. Among the various treatments, soils amended with 75% CS-g-PMAA-KCl and 50% CS-g-PMAA-KCl showed an increase in both fresh as well as dry biomass accumulation by 50 and 30% respectively in relation to control (inorganic N, P, K). Further, these treatments also showed an enhanced N uptake as well as carbon cycling activity as measured by increased glucosidase activity in relation to other treatments. In addition, higher microbial activity as measured by an increased FDA hydrolysis was also observed in

हाइड्रोलिसिस द्वारा मापी गई, भी देखी गई। परिणामों से ज्ञात होता है कि नैनो-फॉर्मूलेशन का उपयोग अपेक्षाकृत कम इनपुट आवश्यकता पर बायोमास को स्थायी रूप से बढ़ाने में फायदेमंद हो सकता है।

nano-formulation treatments. The results revealed that the use of nano-formulations can be beneficial in enhancing biomass sustainably at a relatively lower input requirement.


Land Degradation and Development, 31 (2020) 2734-2746

लाल समुद्री शैवाल से KaCyt b, जीन की अभिव्यक्ति के माध्यम से वर्धित प्रकाश संश्लेषण और वृद्धि

Enhancing photosynthesis and growth through expression of KaCyt b₀ gene from a red seaweed

कप्पाफाइकस अल्वारेज़ी (एक लाल समुद्री शैवाल) से KaCyt b₆ जीन को पौधों की वृद्धि को बढ़ाने के लिए तंबाकू में स्थानांतरित किया गया। जीन 935 बेस युग्म लंबा था और 215 अमीनो एसिड के एक प्रोटीन को कूटबद्ध करता था।

The Cytochrome b₆ (KaCyt b₆) gene from Kappaphycus alvarezii (a red seaweed) was transformed in tobacco for enhanced growth. The gene was 935 base pair long and encoded a protein of 215 amino acids. The transgenic

चित्र: (ए) KaCyt b_{ϵ} - pCAMBIA1301 निर्माण का योजना आरेख तथा विभिन्न समय अंतराल के दौरान KaCyt b_{ϵ} ट्रांसजेनिक तंबाकू में (बी) इलेक्ट्रॉन स्थानांतरण दर; (सी) शुद्ध प्रकाश संश्लेषण दर; (डी) कुल घुलनशील शर्करा मात्रा; (ई) पौधों की वृद्धि ।

Figure: (a) Schematic diagram of the KaCyt b_6 - pCAMBIA1301 construct; and (b) electron transfer rate; (c) net photosynthesis rate; (d) total soluble sugar contents; (e) plant growth during different time intervals in KaCyt b_6 transgenic tobacco.

जीन स्थानांतरित (ट्रांसजेनिक) तंबाकू में प्राकृतिक-प्रकार और वेक्टर नियंत्रित तंबाकू की तुलना में इलेक्ट्रॉन स्थानांतरण दर और उच्च प्रकाश संश्लेषण उपज पायी गयी। KaCyt b₆ जीन स्थानांतरित तंबाकू ने प्रकाश संश्लेषणीय गैसों का विनिमय और जल उपयोग दक्षता का बेहतर प्रदर्शन किया। ट्रांसजेनिक पौधों में PN और अंतर कोशिकीय कार्बन डाइऑक्साइड का अनुपात अधिक था। ट्रांसजेनिक तंबाकू ने फोटोसिस्टम ॥ क्वांटम उपज, जल-विभाजन कॉम्प्लेक्स की गतिविधि, फोटोसिस्टम ॥ फोटोकैमिस्ट्री और फोटोकैमिकल शमन का बेहतर प्रदर्शन दिखाया। ट्रांसजेनिक तंबाकू में कैरोटीनॉयडस और कुल क्लोरोफिल की मात्रा उच्च रही। बेहतर प्रकाश संश्लेषण दक्षता के कारण ट्रांसजेनिक तंबाकू ने शर्करा और स्टार्च की उच्च मात्रा का उत्पादन किया। ट्रांसजेनिक पौधों ने नियंत्रित और ग्रीनहाउस परिस्थितयों में बेहतर प्रदर्शन किया। जहां तक हमारी जानकारी है, कप्पाफाइकस अल्वारेज़ी से KaCyt be जीन का तंबाकू में उच्च प्रकाश संश्लेषण दक्षता और वृद्धि के लिए लक्षण वर्णन पर यह पहली रिपोर्ट है।

tobacco had a higher electron transfer rate and photosynthetic yield over wild-type (WT) and vector control (VC) tobacco. The KaCyt b6 exhibited significantly photosynthetic gas exchange and improved water use efficiency. The transgenic plants had a higher ratio of PN and intercellular CO2. The transgenic tobacco showed higher estimates of photosystem II quantum yield, higher activity of the water-splitting complex, PSII photochemistry and photochemical quenching. Transgenic tobacco contained higher contents of carotenoids and total chlorophyll. Due to improved photosynthetic efficiency transgenic tobacco produced higher contents of sugar and starch. The KaCyt b6 transgenic plants performed superior under control and greenhouse conditions. To the best of our knowledge, this is the first report on the characterization of the KaCyt be gene from K. alvarezii for enhanced photosynthetic efficiency and growth in tobacco.

DNA and Cell Biology (2020) [10.1089/dna.2020.5479]

सैलिकोर्निया ब्रेकियेटा में बीज अंकुरण और अंकुर विकास से जुड़े भौतिक रासायनिक परिवर्तन

Seed germination and seedling development associated physiochemical changes in Salicornia brachiata

सैलिकोर्निया ब्रेकियेटा (Roxb) में बीज अंकुरण क्षमता, अंकुर वृद्धि और अंकुर विकास से जुड़े भौतिक-रासायनिक परिवर्तनों का अध्ययन किया गया। 75% सांद्रता से ऊपर समुद्री जल, 400 मिली मोलर से ऊपर सोडियम क्लोराइड और 20% से ऊपर पॉलीइथाइलीन ग्लाइकॉल (पीईजी) घोल ने सैलिकोर्निया ब्रेकियेटा में बीज के अंकुरण को 50% तक कम किया। तनाव शक्ति के साथ अंकुरण ऊर्जा, अंकुरण के वेग का गुणांक, सापेक्ष नमक क्षति और विभिन्न अंकुरण सूचकांक कम हुये। 1000 मिली मोलर सोडियम क्लोराइड और 40% पीईजी घोल सैलिकोर्निया ब्रेकियेटा में बीज

Seed germination potential, seedling growth and seedling development associated with physiochemical changes were studied in *Salicornia brachiata* (Roxb). Seawater above 75% strength, NaCl above 400 mM and polyethylene glycol (PEG) above 20% reduced seed germination by 50% in *S. brachiata*. Germination energy, coefficient of the velocity of germination, relative salt injury, and different germination indexes decreased with stress strength. NaCl at 1000 mM and PEG at 40% completely inhibited seed germination in

अंकुरण को पूर्णतया रोक देता है। पुनर्प्राप्ति अध्ययनों में, निरोधात्मक तनाव को हटा दिए जाने के बाद 100% बीज अंक्रित होते है। सैलिकोर्निया ब्रेकियेटा ने समुद्री जल की 75% शक्ति और 200 mM सोडियम क्लोराइड के तहत काफी उच्च बीज शक्ति सूचकांक का प्रदर्शन किया। शर्करा, मूक्त अमीनो एसिड, और प्रोलीन मात्रा अंक्र विकास और तनाव के प्रकार के साथ भिन्न होती है। अंकूर विकास के दौरान पॉलीफिनोल्स और फ्लेवोनोइडस के उच्च संचय ने आरओएस संचय को कम करने में मदद की। सैलिकोर्निया ब्रेकियेटा ने अध्ययन किये गए कोशिका भित्ति हाइड्रॉलेस की गतिविधियों का तुलनात्मक रूप से उच्च प्रदर्शन किया, जिससे बीज अंकूरण और अंकूर विकास के दौरान कोशिका भित्ति में जलयोजन और लोच बनाए रखने में मदद मिली। तनाव की स्थिति में अंक्र विकास के दौरान एंटीऑक्सीडेंट एंजाइमों की डिफरेंशियली उच्च गतिविधि ने आरओएस संचय को कम करने में मदद की। समान परासरण शक्ति के तनावों के बीच, समुद्री जल ने अधिकतम अवरोध दिखाया और तद् उपरान्त सोडियम क्लोराइड और पीईजी तनाव द्वारा।

S. brachiata. In recovery studies, 100% of seeds germinated once the inhibitory stress was removed. S. brachiata exhibited a significantly higher seed vigor index under 75% strength of seawater and 200 mM NaCl. Sugar, free amino acid, and proline contents varied with seedling development and type of stress. Higher accumulation of polyphenols and flavonoids during seedling development helped to reduce the ROS accumulation. S. brachiata exhibited comparatively higher activity of the studied cell wall hydrolases, which helped to maintain hydration and elasticity of the cell walls during seed germination and seedling development. Differentially higher activity of enzymes during antioxidant development under stress conditions helped to reduce the ROS accumulation. Among stresses of similar osmolarity strengths, seawater exhibited maximum inhibition and it was followed by NaCl and PEG stress.

Aquatic Botany, 166 (2020) 103272

सैलिकोर्निया ब्रेकियेटा में प्रकाश संश्लेषक गैस विनिमय और क्लोरोफिल ए प्रतिदीप्ति Photosynthetic gas exchange and chlorophyll a fluorescence in Salicornia brachiata

सैलिकोर्निया ब्रेकियेटा (Roxb.) में प्रकाश संश्लेषण गैस विनिमय और क्लोरोफिल प्रतिदीप्ति का अध्ययन सोडियम क्लोराइड, समुद्री जल और पॉलीइथाइलीन ग्लाइकॉल (पीईजी) प्रेरित परासरणीय तनाव की स्थिति में किया गया। यह पौधा समुद्री जल की 100% सांद्रता (32.5 पीपीटी) और 0.5 मोलर सोडियम क्लोराइड की लवणता में शानदार ढंग से उगता है और उच्च सिहष्णुता सूचकांक और कार्बनिक विलेय के बेहतर संचय का प्रदर्शन करता है। इसने समुद्री जल की लवणता की शत-प्रतिशत सांद्रता के तहत तुलनात्मक रूप से गैस विनिमय, रंध्रीय चालन, PSII फोटोकेमिस्ट्री और इलेक्ट्रॉन स्थानांतरण का बेहतर प्रदर्शन किया। उच्च क्लोरोफिल ए/बी अनुपात ने कृशल प्रकाश

Photosynthetic gas exchange and chlorophyll fluorescence in *Salicornia brachiata* (Roxb.) was studied under sodium chloride (NaCl), seawater and polyethylene glycol (PEG) induced osmotic stress. It grows luxuriantly and exhibited a higher tolerance index and better accumulation of organic solutes under 100% strength of seawater (32.5 ppt) and 0.5M NaCl salinity. It exhibited comparatively better gas exchange, stomatal conductance, PSII photochemistry and electron transfer under 100% strength of seawater salinity. Higher chlorophyll a/b ratio indicated efficient

संक्षेषण प्रक्रियाओं के संकेत दिए। समुद्री जल की 100% सांद्रता और 0.5 मोलर सोडियम क्लोराइड की लवणता ने सैलिकोर्निया ब्रेकियेटा के एंटीना के आकार, PSII प्रतिक्रिया केंद्रों के बीच संपर्क और PSII दाता की ओर इलेक्ट्रॉनों के अपचयन को महत्वपूर्ण रूप से प्रभावित नहीं किया। 20% पीईजी घोल ने PSII प्रतिक्रिया केंद्रों को निष्क्रिय करने के लिए प्रेरित किया और सैलिकोर्निया ब्रेकियेटा में PSII प्रतिक्रिया केंद्रों को नुकसान पहुँचाया। समुद्री जल की 100% सांद्रता और 0.5 मोलर सोडियम क्लोराइड की लवणता में उच्च PITotal ने सैलिकोर्निया ब्रेकियेटा में PSII प्रतिक्रिया केंद्रों के लिए ऊर्जा प्रवाह, इलेक्ट्रॉन परिवहन और प्रतिक्रिया केंद्रों के प्रदर्शन के बेहतर होने के संकेत दिए। परासरण तनाव की उच्च शक्ति सैलिकोर्निया ब्रेकियेटा में PSII इलेक्ट्रॉन परिवहन की क्वांटम उपज और संदीपन ऊर्जा को कैप्चर करने की दक्षता को घटाती है।

photosynthetic processes. The 100% strength of seawater and 0.5M NaCl salinity in S. brachiata did not cause significant changes in antenna size, connectivity between PSII reaction centers (RCs) and reduction of electrons on the PSII donor side. The 20% PEG induced the inactivation of RCs and cause damage to PSII RCs in S. brachiata. The higher PITotal in S. brachiata under 100% strength of seawater and 0.5M NaCl stress indicated a better energy flux reaching PSII RCs, electron transport and performance of RCs. The higher strengths of osmotic stress causes reduction in the quantum yield of PSII electron transport and capturing efficiency of excitation energy in S. brachiata.

J Plant Growth Regul. (2021) [10.1007/s00344-021-10311-8]

उरद की दो पृथक किस्मों पर कप्पाफाइकस आधारित समुद्री शैवाल बायोस्टिमुलेंट की प्रभावकारिता

Efficacy of Kappaphycus seaweed biostimulant on two different varieties of Black gram

उरद की दो पृथक किस्मों, अर्थात् टीएयू -1 और डीबीजीवी -5 पर कप्पाफाइकस आधारित समुद्री शैवाल बायोस्टिमुलेंट (केएसडब्ल्यूई) की प्रभावकारिता का मूल्यांकन करने के लिए 2020 के खरीफ मौसम में पॉट-परीक्षण किया गया। इन किस्मों ने विभिन्न कृषि जलवायु परिस्थितियों में किए गए हमारे पहले के बहुस्थानीय परीक्षणों में विपरीत प्रदर्शन किया। प्रयोग को एक विभाजित भूखंड रचना में किया गया जिसमें केएसडब्ल्यूई (0, 5, 10, 15 और 20%) के 5 अलग-अलग सांद्रता मुख्य भूखंड तथा विविधता के साथ उप भूखंड थे। प्रत्येक उपचार को तीन बार दोहराया गया था। इस प्रकार 15 मुख्य भूखंड थे जिनमें से प्रत्येक में 2 उप भूखंड थे। प्रत्येक उप भूखंड थे जिनमें से प्रत्येक में 2 उप भूखंड थे। प्रत्येक उप भूखंड थे जिनमें कम से कम 9 पौधे थे। प्रारंभिक और अंतिम मिट्टी का लक्षण-वर्णन उनकी पोषक स्थिति के लिए किया गया। विभिन्न विकास, शारीरिक और

A pot-trial was conducted in the Kharif season of 2020 in order to evaluate the efficacy of Kappaphycus-based seaweed biostimulant (KSWE) on two different varieties of Urd (Black gram), namely TAU-1 and DBGV-5. These varieties performed contrastingly in our earlier multi-locational trials conducted in different agro-climatic conditions. experiment was laid out in a split-plot design with 5 different concentrations of KSWE (0, 5, 10, 15 and 20%) as the main plot and variety in the sub-plot. Each treatment was replicated thrice. Thus there were 15 main plots each consisting of 2 sub plots. Each sub-plot had at least 9 plants. Initial and final soils were characterized for their nutrient status. Various growth, physiological and yield parameters

उपज मापदंडों को मापा गया। परिणामों के विश्लेषण से पता चला कि केएसडब्ल्यूई सांद्रता ने उरद (एफ = 4.057, पी = 0.0430) की उपज को α = 5% पर काफी प्रभावित किया। केएसडब्ल्यूई (एफ = 0.32, पी = 0.582) के उपयोग के कारण दो किरमों के बीच उपज में कोई अंतर नहीं था। उपज में वृद्धि केवल 5% केएसडब्ल्यूई सांद्रता में देखी गई और नियंत्रित नम्ने से 12.2% अधिक थी।

were measured. Analysis of the results revealed that KSWE concentration significantly affected the yield of Black gram (F = 4.057, p=0.0430) at α =5%. There was no difference in yield between the two varieties owing to the use of KSWE (F = 0.32, p=0.582). The increase in yield was observed only in 5% KSWE concentration and was 12.2% higher than in control.

तरल माध्यम का उपयोग करके जंकस रिगिडस के माइक्रोप्रोपेगेशन प्रोटोकॉल का विकास Development of micropropagation protocol of Juncus rigidus using liquid medium

जंकस रिगिडस सेल्यूलोज का एक संभावित पादप स्रोत है। यह लवणता और शुष्कता के प्रति सहिष्णु है और लवणीय से गैर-लवणीय क्षेत्रों में बढ़ सकता है। जंकस मिट्टी की लवणता को कम कर सकता है और इस तरह मिट्टी को पुनः प्राप्त करने में सक्षम है। जंकस अच्छी गुणवत्ता की चटाई बनाने के लिए उपयोगी होते हैं। माइक्रोप्रोपेगेशन प्रोटोकॉल को राइजोम का उपयोग करके विकसित किया गया। एक्सप्लांट्स ने एमएस माध्यम पर शूट बड्स का उत्पादन किया जिसमें 6-बेंजाइलअमीनोप्युरिन और इंडोल एसिटिक एसिड मौज़ूद थे। लम्बी टहिनयों को बोया गया और फिर आगे सख्त होने के लिए जीवाणु रहित मिट्टी में स्थानांतरित कर दिया गया। 50 जंकस पौधे उत्पन्न हुए और खुली नर्सरी

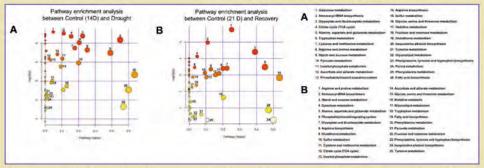
Juncus rigidus is a potential plant source for cellulose. It is tolerant to salinity and aridity and can grow in saline to non-saline areas. Juncus could decrease soil salinity and thereby capable of reclaiming the soil. Juncus is useful for making good quality mats. micropropagation protocol has been developed using rhizomes. The explants produced shoots buds on MS medium containing 6-Benzylaminopurine and Indole acetic acid. The elongated shoots were well rooted and then transferred to sterile soil for further hardening. 50 Juncus plants were

चित्रः नर्सरी में स्थापित जंकस रिगिडस और पौधों का माइक्रोप्रोपगेसन चक्रा

Figure: Micropropagation cycle of Juncus rigidus and plants established in nursery.

में अच्छी तरह से स्थापित हुए। प्रति पौधे उत्पादन की लागत र 1.0 है क्योंकि एक जार में 200 से अधिक अंकुर होते हैं। generated and well established in the open nursery. The cost of production per plant is ₹ 1.0 as one jar consisted >200 shoots.

सूखा सिहष्णुता प्रदान करने वाले मरू-लवणोद्भिद हेलोक्सिलॉन सैलिकॉर्निकम में शारीरिकी और चयापचय समायोजन


Physiological and metabolic adjustments in the xero-halophyte Haloxylon salicornicum conferring drought tolerance

सूखा एक विनाशकारी अजैविक तनाव है जो वैश्विक खाद्य उत्पादन को गंभीर रूप से प्रभावित करता है। यह कार्य मरू-लवणोद्भिद हेलोक्सिलॉन सैलिकॉर्निकम में सूखे के प्रभाव का मुकाबला करने के लिए चयापचय और शारीरिकी अनुकूलन तंत्र की जांच करता है। यह मरू-लवणोद्भिद 14 दिनों के लंबे समय तक सुखे की अवधि का सामना कर सकता है और सिंचाई के 7 दिनों के भीतर सूखे के कारण विकास और शारीरिकी पैरामीटर पर न्यूनतम प्रभाव के साथ ठीक हो सकता है। प्रकाश संश्लेषक पैरामीटर जैसे पीएन, जीएस, और ई में काफी कमी आई, जबिक सूखे की स्थिति में WUE में वृद्धि हुई। सूखा Fv/Fm अनुपात में भारी गिरावट को प्रेरित करता है। हालांकि, Fv/Fm अनुपात का मान पुनप्राप्ति अवधि के 7 दिनों के भीतर सफलतापूर्वक पुनप्राप्त किया गया। विभिन्न एंटीऑक्सीडेंट एंजाइमों का अवकल नियंत्रण एच. सैलिकॉर्निकम की सूखा सहिष्णुता क्षमता में वृद्धि करता है। एच. सैलिकॉर्निकम शूट के चयापचय विश्लेषण द्वारा 63 मेटाबोलाइट्स की पहचान की गई: सूखे की स्थिति में 43 में उल्लेखनीय रूप से वृद्धि हुई और 20 के तहत काफी कमी आई। इन मेटाबोलाइट्स में मुख्य रूप से अमीनो अम्ल, कार्बनिक अम्ल, एमीन, शर्करा अल्कोहल, शर्करा, वसीय अम्ल, एल्कोलॉयड्स एवं पादपहार्मीन्स सम्मिलित हैं। सूखा सिहष्णुता की दिशा में महत्वपूर्ण योगदान देने वाले मेटाबोलाइट्स में सिट्रिक अम्ल, मेलिक अम्ल, टरटेरिक अम्ल, D-एरिथ्रोस, ग्लिसेरिक अम्ल, स्क्रोस, पेंटानोइक अम्ल, डिमेनिटोल, ABA, एवं पामिटिक अम्ल शामिल हैं। KEGG मार्ग संवर्धन विश्लेषण दर्शाता है कि महत्वपूर्ण सूखा-उत्तरदायी चयापचय मार्गों में मुख्य रूप

Drought is one of the most catastrophic abiotic stresses that affects global food production severely. This work investigates the metabolic and physiological adaptation mechanisms in the xero-halophyte Haloxylon salicornicum to counter the effects of drought. xero-halophyte can withstand a prolonged drought period of 14 days and recovered within 7 days of irrigation with minimal effects of drought on growth and physiological parameters. Photosynthetic parameters such as PN, gs, and E decreased significantly, whereas WUE increased under the drought condition. Drought induces a significant decline in the Fv/Fm ratio. However, the value of Fv/Fm ratio successfully recovered within 7 days of the recovery period. Differential regulations of various antioxidative enzymes increase the drought tolerance potential of H. salicornicum. The metabolomic analysis of H. salicornicum shoot identified 63 metabolites: 43 significantly increased and 20 significantly decreased under drought conditions. These metabolites mainly include amino acids, organic acids, amines, sugar alcohols, sugars, fatty acids, alkaloids, and phytohormones. The metabolites that have a significant contribution toward drought tolerance include citric acid, malic acid, tartaric acid, D-erythrose, glyceric acid, sucrose, pentanoic acid, Dmannitol, ABA, and palmitic acid. KEGG pathway enrichment analysis showed that the vital droughtresponsive metabolic pathways mainly include

से गेलेक्टोस मेटाबोलिस्म, एमीनोएसाइल-tRNA जैव-संश्लेषण, ग्लायोक्सिलेट एवं डाईकार्बोक्सिलेट मेटाबोलिस्म, सिट्रेट चक्र (TCA चक्र), एलेनिन, एस्पाट्रेंट और ग्लूटामेट मेटाबोलिस्म सम्मिलित हैं। यह अध्ययन शारीरिकी, एंटीऑक्सीडेंट व चयापचय अनुकूलन और एच. सैलिकॉर्निकम में समग्र सूखा सिहण्णुता तंत्र पर व्यापक जानकारी प्रदान करता है। इस अध्ययन से मिली जानकारी पादप प्रजनकों और आण्विक जीविवज्ञानी को सूखा सिहण्णु फसल किस्मों का विकास करने में मार्गदर्शन करेगी।

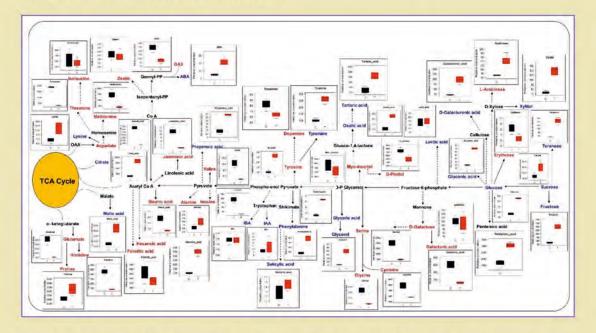
galactose metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism, citrate cycle (TCA cycle), alanine, aspartate and glutamate metabolism. This study offers comprehensive information on physiological, antioxidative and metabolic adaptations and overall drought tolerance mechanisms in H. salicornicum. information gained from this study will provide guidance to plant breeders and molecular biologists to develop droughttolerant crop varieties.

चित्र: सूखे और पुनर्प्राप्ति की अनुक्रिया में महत्वपूर्ण रूप से परिवर्तित चयापचय मार्गों को दर्शाने वाला मार्ग विश्लेषण। जितना गहरा चक्र का रंग, सूखे के तनाव के तहत इस मार्ग के मेटाबोलाइट्स उतने अधिक परिवर्तित हुए हैं। वृत्त का आकार जितना बड़ा होगा, मेटाबोलाइट का मार्ग पर प्रभाव उतना ही अधिक होगा। (ए) सूखे की अनुक्रिया में महत्वपूर्ण चयापचय मार्ग; (बी) प्राप्ति की अनुक्रिया में महत्वपूर्ण चयापचय मार्ग।

Figure: Pathway analysis showing the significantly altered metabolic pathways in response to drought and recovery. The darker the color of the circle, the more altered are the metabolites of this pathway under drought stress. The larger the circle size, the higher impact the metabolite has on the pathway. (A) Significant metabolic pathways in response to drought; (B) significant metabolic pathways in response to recovery.

Physiologia Plantarum 172 (2021) 1189-1211

गैर-लक्षित मेटाबोलोमिक्स दृष्टिकोण का उपयोग कर नमक अनुक्रियाशील मेटाबोलाइट्स और चयापचय मार्गों का प्रदर्शन और मरू-लवणोद्भिद हेलोक्सिलॉन सैलिकॉर्निकम में नमक सहिष्णुता तंत्र का स्पष्टीकरण


Unraveling salt responsive metabolites and metabolic pathways using nontargeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum

हेलोक्सिलॉन सैलिकॉर्निकम दुनिया भर के खारे और शुष्क क्षेत्रों में उगने वाला एक मरू-लवणोद्भिद है। इस मरू-

Haloxylon salicornicum is a xero-halophyte growing in saline and arid regions of the world. Metabolite profiling was carried out in

लवणोद्भिद में लवणता सिहष्णुता तंत्र को समझने के लिए जीसी-क्यूटीओएफ-एमएस और एचपीएलसी-डीएडी विश्लेषण द्वारा नियंत्रित और लवणता उपचारित (400 मिली मोलर NaCI) नमूनों के शूट में मेटाबोलाइट प्रोफाइलिंग की गई। वर्तमान अध्ययन एच. सैलिकॉर्निकम के मेटाबोलाइट प्रोफाइल में परिवर्तन की जांच करता है जो पौधे की लवणता सहनशीलता का समर्थन करता है। एच. सैलिकॉर्निकम शूट के मेटाबॉलिक विश्लेषण ने 56 मेटाबोलाइट्स की पहचान की, जिनमें से 47 मेटाबोलाइट्स लवणता के प्रभाव में महत्वपूर्ण रूप से बदल गए थे। इन मेटाबोलाइट्स को मुख्य रूप से अमीनो अम्ल, कार्बनिक अम्ल, एमीन, शर्करा अल्कोहल, शर्करा, वसीय अम्ल, एल्कलॉइड और पादपहोर्मोन की श्रेणी में शामिल किया गया था। लवणता के

shoot of both control and salinity treated (400 mM NaCl) samples by GC-QTOF-MS and HPLC-DAD analysis to decipher the salinity tolerance mechanism in this xero-halophyte. The present study investigates the alteration in the metabolite profile of H. salicornicum that support the salinity tolerance of the plant. The metabolomic analysis of H. salicornicum shoot identified 56 metabolites, of which 47 metabolites were significantly changed in response to salinity. These metabolites were mainly included in the category of amino acids, organic acids, amines, sugar alcohols, alkaloids, sugars, fatty acids, phytohormones. In response to salinity, most

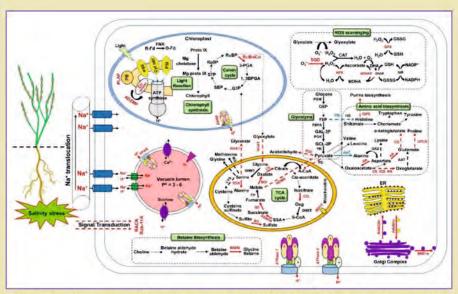
चित्र: एच. सैलिकॉर्निकम के विभिन्न चयापचयों और उपापचयी पथों के लवणता प्रेरित प्रत्यावर्तन का योजनाबद्ध निरूपण। मेटाबोलाइट्स की सापेक्ष सांद्रता को वाई-अक्ष पर सापेक्ष एकाग्रता और एक्स-अक्ष पर उपचार समूहों के साथ बॉक्स प्लॉट के रूप में दर्शाया गया। महत्वपूर्ण अप और डाउन-नियंत्रण उपचारित पौधों में नियंत्रण की तुलना में विभिन्न मेटाबोलाइट्स क्रमशः नीले और लाल फोंट में दिखाए जाते हैं।

Figure: Schematic representation of salinity induced alternation of different metabolites and metabolic pathways of H. salicornicum. Relative concentrations of the metabolites were represented in the form of box plots with relative concentration on Y-axis and treatment groups on X-axis. The significant up and down-regulation of different metabolites in treated seedlings compared to control are shown in blue and red fonts, respectively.

प्रभाव में, एलेनिन, फेनिलएलनिन, लाइसिन और टाइरामीन को छोड़कर अधिकांश अमीनो अम्ल डाउन-रेगुलेटेड थे, जिन्हें एच. सैलिकॉर्निकम में अप-रेगूलेट किया गया था। अमीनो एसिड के विपरीत, लवणता के प्रभाव में अधिकांश शर्करा और कार्बनिक अम्ल अप-रेगुलेट हो गये। सहसंबंध और मार्ग संवर्धन विश्लेषण ने एच. सैलिकॉर्निकम की नमक सहिष्णुता प्रदान करने में महत्वपूर्ण भूमिका निभाने वाले महत्वपूर्ण जैविक मार्गों की पहचान की। इन जैविक मार्गों में अमीनो शर्करा और न्यूक्लियोटाइड शर्करा चयापचय, साइट्रेट चक्र (टीसीए चक्र), स्टार्च और सुक्रोज चयापचय, फेनिलएलनिन चयापचय, सिस्टीन, मेथियोनीन, ग्लाइसिन, सेरीन और थ्रेओनीन चयापचय आदि शामिल हैं। आंकडे बताते हैं कि विभिन्न चयापचयी मार्ग का मॉड्यूलीकरण एच. सैलिकोर्निकम को उच्च लवणता की स्थित में भी जीवित रहने और इष्टतम रूप से विकसित करने की सुविधा प्रदान करता है। यह अध्ययन एच. सैलिकॉर्निकम में चयापचय अनुकूलन और समग्र नमक सहिष्णुता तंत्र पर व्यापक जानकारी प्रदान करता है।

of the amino acids were down-regulated except alanine, phenylalanine, lysine, and tyramine, which were up-regulated in H. salicornicum. In contrast to amino acids, most sugars and organic acids were up-regulated in response to salinity. Correlation and pathway enrichment analysis identified important biological pathways playing significant roles in conferring salt tolerance of H. salicornicum. These biological pathways include amino sugar and nucleotide sugar metabolism, citrate cycle (TCA cycle), starch and sucrose metabolism, phenylalanine metabolism, cysteine, methionine, glycine, serine, and threonine metabolism, etc. The data suggest that the modulations of various metabolic pathways facilitate H. salicornicum to survive and grow optimally even under high salinity conditions. This study offers comprehensive information on metabolic adaptations and overall salt tolerance mechanisms in H. salicornicum.

Plant Physiology and Biochemistry 158 (2021) 284-296


लवण-सहनशीलता संबद्ध मरू-लवणोद्भिद *हेलोक्सिलॉन सैलिकॉर्निकम* के बहुआयामी नियामक तंत्र का व्यापक प्रोटिओमिक विश्लेषण

Comprehensive proteomic analysis of multifaceted regulatory network of the xero-halophyte *Haloxylon salicornicum* involved in salt tolerance

हेलोक्सिलॉन सैलिकॉर्निकम के लवण अनुकूलन में शामिल नियामक नेटवर्क को प्रकट करने के लिए प्रोटिओमिक दृष्टिकोण का अभी तक अध्ययन नहीं किया गया है। इस अन्वेषण में, एच. सैलिकॉर्निकम की शूट में प्रोटीन के कार्यात्मक नेटवर्क में नमक सहनशीलता की जानकारी प्राप्त करने के लिए लेबल-मुक्त मात्रात्मक प्रोटिओमिक विश्लेषण किया गया। नैनो-ईएसआईएलसी-एमएस और एमएस/ एमएस द्वारा एच. सैलिकॉर्निकम के नियंत्रण और नमक उपचारित पौधों में तुलनात्मक प्रोटिओमिक विश्लेषण और डेटा बेस खोज से 723 प्रोटीनों की पहचान हुई। केईजीजी के द्वारा The proteomic approach for revealing the regulatory network involved in the salt adaptation of Haloxylon salicornicum has not been studied so far. In this investigation, the label-free quantitative proteomic analysis was carried out on shoot of H. salicornicum to get an insight into the functional network of proteins involved in salt tolerance. Comparative proteomic analysis in control and salt treated plants of H. salicornicum by nano-ESILC- MS and MS/MS, and data-base searching led to the identification of 723 proteins. Pathway enrichment analysis by

मार्ग संवर्धन विश्लेषण ने विभिन्न जैविक मार्गों को उजागर किया, जिसमें लवणता-प्रेरित डिफरेंशियली विनियमित प्रोटीन शामिल हैं। एच. सैलिकॉर्निकम में 723 पहचाने गए प्रोटीनों में से. 188 प्रोटीनों को लवणता प्रतिक्रिया के लिए डिफरेंशियली विनियमित पाया गया। तनाव के प्रति संवेदनशील प्रोटीन के महत्वपूर्ण अप-नियंत्रण के अलावा, कार्बोहाइड्रेट चयापचय, टीसीए चक्र, प्रोटीन संश्लेषण, एंटीऑक्सीडेंट रक्षा प्रणाली, ऊर्जा स्थानांतरण, आयन परिवहन, न्यूक्लियोटाइड बंधन, और प्रोटिओसोमल से संबंधित अन्य प्रोटीन भी एच. सैलिकोर्निकम में लवणता के प्रभाव में महत्वपूर्ण रूप से विनियमित होते हैं। RuBisCo, D1 प्रोटीन, फोटोसिस्टम II-CP47, और साइटोक्रोम b599 जैसे प्रमुख प्रकाश संश्लेषक प्रोटीन अप-विनियमित हुए। TCA चक्र घटक प्रोटीन जैसे साइट्रेट सिंथेज़, सक्सेनेट डिहाइड्रोजनेज और मैलेट डिहाइड्रोजनेज अप-रेगुलेट हुए जो लवणता सहिष्णुता के लिए महत्वपूर्ण ऊर्जा प्रदान करने में उनकी महत्वपूर्ण भूमिका का द्योतक है। आयन ट्रांसपोर्टरों की लवणता-प्रेरित उच्च अभिव्यक्ति विषाक्त सोडियम आयनों के कुशल कंपार्टमेंटलाइज़ेशन का सुझाव देती है। इसके अलावा, एंटीऑक्सीडेंट रक्षा प्रणाली का अप-नियंत्रण लवणता प्रेरित आरओएस के प्रभावी सफाई के साथ सहसंबद्ध किया जा सकता है और इसलिए नमक सहिष्णुता प्राप्त होती है। लवणता के प्रभाव में प्रोटीन संश्लेषण बढ़ाता है जैसा कि राइबोसोम से जुड़े प्रोटीन की लवणता-प्रेरित अप-नियंत्रण से पृष्टि ह्यी। राइबोसोमल मार्ग के लवणता प्रेरित महत्वपूर्ण रूप से परिवर्तित प्रोटीन में राइबोसोमल प्रोटीन घटक शामिल हैं जैसे बढ़ाव कारक-Tu (EF-Tu), पहल कारक 1 और 2 (IF1, 2), Rpo क्लस्टर C और B, आदि। NaCI- उपचारित पौधों में राइबोसोमल सबयुनिट प्रोटीन की अधिकता उच्च लवणता के प्रभाव में भी प्रोटीन संश्लेषण मशीनरी की कार्यात्मक अखंडता को बनाए रखाता है। हम मानते हैं कि अप-नियंत्रण TCA चक्र द्वारा लगातार ऊर्जा आपूर्ति के साथ-साथ निर्बाध प्रोटीन संश्लेषण और प्रकाश संश्लेषक मशीनरी की संरचनात्मक अखंडता रखरखाव लवणता सहिष्णुता का प्राथमिक तंत्र है।

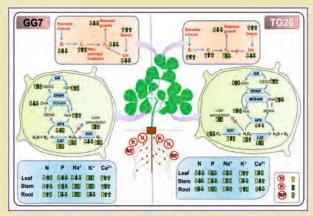
KEGG uncovered various biological pathways which salinity-induced differentially regulated proteins are involved. In H. salicornicum, out of 723 identified proteins, 188 proteins were differentially regulated in response to salinity. In addition to significant up-regulation of stress-responsive proteins, other proteins involved in carbohydrate metabolism, TCA cycle, protein synthesis, antioxidative defense systems, transfer, ion transport, nucleotide-binding, and proteasomal proteins also significantly upregulated under salinity in H. salicornicum. The major photosynthetic proteins up-regulated were RuBisCo, D1 protein, photosystem II-CP47, and cytochrome b599. TCA cycle component proteins such as citrate synthase, succinate dehydrogenase and dehydrogenase are upregulated indicating their significant roles in providing vital energy for salinity tolerance. Salinity-induced higher expressions of ion transporters suggest efficient compartmentalization of toxic sodium ions. In addition, the up-regulation of defense system can antioxidative correlated with effective scavenging of salinity induced ROS and hence imparting salt tolerance. The protein synthesis was boosted under salinity as confirmed by the salinityinduced up-regulation of the ribosome proteins. associated Salinity induced significantly changed proteins of ribosomal pathway includs ribosomal protein components such as elongation factor-Tu (EF-Tu), initiation factor 1 and 2 (IF1, 2), Rpo cluster C and B, etc. The functional integrity of protein synthesis machinery is maintained under high salinity by a higher abundance of ribosomal subunit proteins in NaCl-treated plants. We assume that consistent energy supply by the up-regulations TCA cycle along with uninterrupted protein synthesis and maintenance of structural integrity of the photosynthetic machinery are the primary mechanism of salinity tolerance.

चित्र: एच. सैलिकॉर्निकम में लवणता सहिष्णुता प्रदान करने वाले प्रोटिओमिक परिवर्तन का योजनाबद्ध चित्रण। महत्वपूर्ण रूप से अप-विनियमित प्रोटीन लाल रंग से चिह्नित हैं और डाउन-रेगुलेटेड प्रोटीन को नीले रंग से चिह्नित किया गया है।

Figure: Schematic representation of proteomic alteration providing salinity tolerance in H. salicornicum. Significantly up-regulated proteins are marked with red and down-regulated proteins are marked with blue.

Journal of Biotechnology (2020) 324: 143-161

नाइट्रोजन और/ या फास्फोरस अप्राप्ति के शमन के लिए एरेकिस हाइपोजिया एल (मूंगफली) के दो विपरीत जीनोटाइप में खनिज पोषक तत्व समस्थापन, प्रकाश संश्लेषक निष्पादन, और एंटीऑक्सीडेंट रक्षा घटकों का मॉड्यूलीकरण


Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/ or phosphorus starvation

एरेकिस हाइपोजिया एल. (मूंगफली) एक प्रमुख तेल उपज वाली फसल है और इसकी उत्पादकता काफी हद तक नाइट्रोजन और फास्फोरस की उपलब्धता से प्रभावित होती है। वर्तमान अध्ययन का उद्देश्य N और / या P की कमी को कम करने के लिए मूंगफली के दो विपरीत जीनोटाइप में शामिल डिफरेंशियल शारीरिकी और जैव रासायनिक तंत्र को स्पष्ट करना है। मूंगफली के दो विपरीत जीनोटाइप (जीजी7 और टीजी26) के पौधों को हाइड्रोपोनिक कल्चर स्थित के तहत N और/या P की कमी की स्थित में रखा गया। N

Arachis hypogaea L. (peanut) is a major oilyielding crop and its productivity is largely affected by the availability of nitrogen and phosphorus. The present study aims to elucidate the differential physiological and biochemical mechanisms involved in two contrasting genotypes of peanut for mitigation of N and/or P deficiency. The plants of two contrasting genotypes of peanut (GG7 and TG26) were subjected to N and/ or P deficiency under hydroponic culture conditions. After 15 d of N and/or P deficiency,

और/या P अभाव के 15 दिनों के बाद नियंत्रित और पोषक तत्वों की कमी वाले पौधों में विभिन्न विकास मापदंडों. खनिज पोषक तत्व की स्थिति, पोषक तत्व उपयोग दक्षता, प्रकाश संश्लेषण, वाष्पोत्सर्जन, जल उपयोग दक्षता, क्लोरोफिल प्रतिदीप्ति, आरओएस स्तर, और एंजाइमेटिक और गैर-एंजाइमी एंटीऑक्सिडेंट घटकों में परिवर्तन को मापा गया। हमारे परिणामों से पता चला कि जीजी7 नियंत्रित परिस्थिति में टीजी26 की तूलना में तेजी से बढ़ने वाला जीनोटाइप है, जबिक N और/या P की कमी के प्रभाव में जीजी7 के विकास प्रदर्शन में टीजी26 की तूलना में काफी गिरावट आई है। दोनों जीनोटाइप के N और/या P की कमी वाले पौधों में प्रकाश संश्लेषक वर्णक, शुद्ध प्रकाश संश्लेषण गतिविधि (पीएन), और रंध्र चालन (जीएस) के स्तर में गिरावट आई है। हालाँकि, फोटोसिस्टम II (Fv/Fm) की क्वांटम दक्षता दोनों जीनोटाइप में N और/या P अप्राप्ति के प्रभाव में कोई महत्वपूर्ण रूप से नहीं बदली। वर्तमान जांच में, अधिकांश एंटीऑक्सिडेंट एंजाइम या तो स्थिर अवस्था में रहे या दोनों जीनोटाइप में डाउन-विनियमित हो गए। N और/या P की अप्राप्ति ने दोनों जीनोटाइप में आरओएस के स्तर और O;-, H2O2, और MDA जैसे ऑक्सीडेटिव तनाव संकेतकों को प्रभावित नहीं किया। दोनों ही जीनोटाइप में वृद्धि में गिरावट प्रकाश संश्लेषक प्रदर्शन में कमी के कारण हो सकती है। हमारे परिणाम बताते हैं कि टीजी26, जीजी7 जीनोटाइप की तुलना में N और P की अप्राप्ति के प्रति अधिक प्रतिरोधी है। टीजी26 की तुलना में जीजी7 का उच्च एनयूई मान बताता है कि जीजी7 पर्याप्त पोषक तत्वों की स्थिति में टीजी26 की तुलना में बायोमास उत्पादन को बढ़ावा देने के लिए N का अधिक कुशलता से उपयोग कर सकता है। दूसरी ओर, पत्ती को खनिज संसाधन आवंटन और उच्च पीयूई N और P की कमी की स्थिति के प्रभाव में टीजी26 जीनोटाइप की प्रमुख अनुकूलन विशेषताएं हैं। मूंगफली जीनोटाइप में विभिन्न एंजाइमेटिक और गैर-एंजाइमी एंटीऑक्सीडेटिव घटकों का डिफरेंशियल नियंत्रण खनिज की कमी की स्थिति के तहत कोशकीय रेडॉक्स समस्थापन को बनाए रखते हैं और मूंगफली के पौधों को

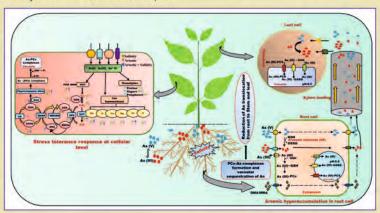
various growth parameters, mineral nutrient status, nutrient use efficiency, photosynthesis, transpiration, water use efficiency, chlorophyll fluorescence, ROS level, and changes in enzymatic and non-enzymatic antioxidative components were measured in control and nutrient deficient plants. Our results showed that GG7 is a fast-growing genotype than TG26 under control conditions, whereas under N and/or P deficiency growth performance of GG7 was significantly declined as compared to TG26. The levels of photosynthetic pigments, net photosynthesis activity (PN), and stomatal conductance (gs) declined in N and/or P deficient plants of both the genotypes. However, the quantum efficiency photosystem II (Fv/Fm) did not change significantly under N and/or P starvation in both the genotypes. In the present investigation, most of the antioxidative enzymes either remained in steady-state or downregulated in both the genotypes. N and/or P deficiency did not influence the levels of ROS and oxidative stress indicators such as O₂-, H₂O₂, and MDA in both the genotypes. The decline in growth in both the genotypes might be due to the reduced photosynthetic performance. Our results suggest that TG26 is more resistant to N and P deficiency than GG7 genotype. A higher NUE value of GG7 as compared to TG26 suggests that GG7 can utilize N more efficiently to promote biomass production than TG26 under sufficient nutrient condition. On the other hand, mineral resource allocation to leaf and higher PUE are key adaptive features of the TG26 genotype under N, and P deficiency conditions. The differential regulations of various enzymatic and non-enzymatic antioxidative components in peanut genotypes maintain the cellular redox homeostasis under mineral deficiency conditions and prevent the peanut plants from oxidative stress, thereby maintaining

चित्र: दो हाइपोग्य जीनोटाइप में N और/या P अप्राप्ति के प्रभावों और इन खनिज कमी तनाव को कम करने के लिए शारीरिकी और जैव रासायनिक तंत्र को दर्शाने वाला योजनाबद्ध मॉडला ऊपर की ओर तीर (†), नीचे की ओर (↓) और ऊर्ध्वाधर रेखा (١) क्रमशः अपनियंत्रण, डाउनियंत्रण और कोई महत्वपूर्ण परिवर्तन नहीं दर्शाते है। नाइट्रोजन, फॉस्फोरस और एनपी की कमी क्रमशः पीले, गहरे हरे और हल्के हरे रंग द्वारा दर्शायी गयी है।

Figure: Schematic model showing the effects of N and/or P starvation in two hypogaea genotypes and the physiological and biochemical mechanisms to mitigate these mineral deficiency stress. The upward arrow (\uparrow) , downward (\downarrow) and vertical line (|) shows upregulation, downregulation and no significant changes respectively. Nitrogen, phosphorous and NP deficiencies are represented by yellow, dark green and light green color respectively.

ऑक्सीडेटिव तनाव से बचाता हैं, जिससे PSII दक्षता बनी रहती हैं। वर्तमान अध्ययन की जानकारी मूंगफली में उन लक्षणों के सुधार के लिए उपयोगी हो सकती है जो उर्वरकों के न्यूनतम इनपुट के साथ N और P की कमी वाले वातावरण के प्रभाव उत्पादकता को बनाए रख सकते हैं।

PSII efficiency. The information from the present study can be useful for the improvement of traits in peanuts that can maintain the productivity under N and P deficient environments with minimum input of fertilizers.


Journal of Biotechnology (2020) 323: 136-158

शारीरिकी, जैव रासायनिक और आरओएस सफाई विशेषताओं के मॉड्यूलन द्वारा ऐच्छिक लवणोद्भिद सल्वाडोरा पर्सिका एल में लवणता द्वारा आर्सेनिक विषाक्तता को कम करना Salinity alleviates the arsenic toxicity in the facultative halophyte Salvadora persica L. by the modulations of physiological, biochemical, and ROS scavenging attributes

मिट्टी में भारी (उप)धातुओं का संदूषण एक प्रमुख पर्यावरणीय चिंता है जो कृषि उपज को सीमित करता है और दुनिया भर में मानव स्वास्थ्य के लिए खतरा है। आर्सेनिक (As) मिट्टी में पाया जाने वाला सबसे जहरीला गैर-आवश्यक उपधातु है जो विभिन्न प्राकृतिक स्रोतों और मानवीय गतिविधियों से आता Heavy metal(loid)s contamination in soil is a major environmental concern that limits agricultural yield and threatens human health worldwide. Arsenic (As) is the most toxic non-essential metalloid found in soil which comes from various natural sources as well as human

है। एस. पर्सिका एक ऐच्छिक लवणोद्भिद है जो शुष्क, अर्ध-शुष्क और लवणीय क्षेत्रों में प्रचुर मात्रा में पाया जाता है। वर्तमान अध्ययन में एस. पर्सिका में वृद्धि, खनिज पोषक तत्व समस्थापन, एमडीए मात्रा, फाइटोकेलेटिन स्तर, और आरओएस-सफाई विशेषताओं की जांच की गई, जो कि लवणता (250 मिलीमोलर और 750 मिलीमोलर NaCI) के पृथक उपचार, आर्सेनिक के पृथक उपचार (200 µM और 600 µM), और As के 250 mM NaCI के साथ संयुक्त उपचार, लवणता और सहिष्णूता तंत्र को स्पष्ट करने के उद्देश्य से अधिरोपित किया गया। परिणामों ने प्रदर्शित किया कि एस. पर्सिका के पौधे As (600 µM) के साथ-साथ NaCI (750 मिलीमोलर) के उच्च स्तर को सहन कर पाने में सक्षम हैं। सुपरऑक्साइड डिसम्यूटेज, कैटेलेज, पेरोक्सीडेज और ग्लूटाथियोन रिडक्टेस की गतिविधियां लवण या As तनाव के प्रभाव या तो ऊंची या अप्रभावित थी। हालांकि, एस्कॉर्बेट पेरोक्सीडेज गतिविधि पृथक रूप से एवं As और NaCI के संयोजन दोनों के प्रभावों में घट गई। इसके अलावा, अपचयित एस्कॉर्बेट/ डीहाइड्रोएस्कॉर्बेट और अपचियत ग्लुटाथायोन/ ऑक्सीडाइज्ड ग्लुटाथायोन अनुपात के रूप में मापी गई कोशिकीय रेडॉक्स स्थिति, भी

activities. S. persica is a facultative halophyte found abundantly in dry, semiarid and saline areas. In the present study, growth, mineral homeostasis, MDA nutrient phytochelatin levels, and ROS-scavenging attributes were examined in S. persica imposed to solitary treatments of salinity (250 mM and 750 mM NaCl), solitary treatments of arsenic (200 μM and 600 μM) and combined treatments of As with 250 mM NaCl with an aim to elucidate salinity and As tolerance mechanisms. The results demonstrated that S. persica plants sustained under high levels of As (600 µM) as well as NaCl (750 mM). The activities of superoxide dismutase, catalase, peroxidase, and glutathione reductase were either elevated or unaffected under salt or As stress. However, ascorbate peroxidase activity declined under both solitary and combination of As with NaCl. Furthermore, the cellular redox status measured in terms of reduced ascorbate/ dehydroascorbate, and reduced glutathione/ oxidized glutathione ratios also either increased or remained unaffected in

चित्र: एस. पर्सिका के विभिन्न ऊतकों में लवणता और आर्सेनिक सिहण्णुता तंत्र और आर्सेनिक के ट्रॉसलोकेशन को दर्शाता योजनाबद्ध आरेख। ऊपर की ओर तीर (†), नीचे की ओर तीर (↓) और लंबवत रेखाएं (╽) क्रमशः अप-नियंत्रण, डाउन-नियंत्रण और कोई महत्वपूर्ण परिवर्तन नहीं दर्शाती हैं।

Figure: Schematic diagram illustrating salinity and arsenic tolerance mechanism and translocation of arsenic in the various tissue of S. persica. The upward arrow (\uparrow) , downward arrow (\downarrow) and vertical lines (|) represent up-regulation, down-regulation and no significant changes respectively.

पृथक और As+NaCl के संयुक्त उपचारित दोनों अंकुरों में या तो बढ़ गयी या अप्रभावित रही। उच्च As तनाव की स्थिति के प्रभाव में विभिन्न ऑक्सीडेटिव तनाव संकेतकों (H₂O₂ और O₂-) का महत्वपूर्ण संचयन देखा गया। हालांकि, उच्च As के साथ लवण की उपस्थिति ने आरओएस के स्तर को काफी कम किया। इसके अलावा, उच्च As तनाव के प्रभाव में बहिर्जात लवण ने As सहिष्णुता सूचकांक (Ti) में सुधार किया। सभी उपचारों में ट्रांसलोकेशन फैक्टर (टीएफ) और As बायोएक्युमुलेशन फैक्टर (बीएफ) के मान >1 रहे। इस अध्ययन से, यह निष्कर्ष निकाला जा सकता है कि ऐच्छिक लवणोद्भिद एस. पर्सिका एक संभावित As संचायक है और आर्सेनिक-दूषित लवणीय मिट्टी के फाइटोएक्स्ट्रेक्शन के लिए प्रयुक्त हो सकता है।

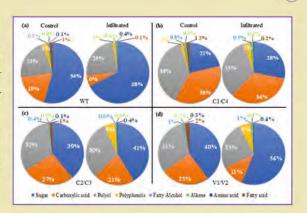
seedlings treated with both solitary and combined treatments of As + NaCl. Significant accumulation of various oxidative stress indicators (H2O2 and O2) were observed under high As stress conditions. However, the presence of salt with high As significantly reduced the levels of ROS. Furthermore, exogenous salt improved As tolerance index (Ti) under high As stress condition. The values of translocation factor (Tf) and bioaccumulation factor (BF) were >1 in all the treatments. From this study, it can be concluded that the facultative halophyte S. persica is a potential As accumulator and may find application for phytoextraction of arseniccontaminated saline soil.

Journal of Hazardous Materials 401 (2021) 123368

स्वस्थ और जेमिनीवायरस एग्रोइनफिल्ट्रेटेड पर्ण ऊतक में amiRNA अभिव्यक्त करने वाले ट्रांसजेनिक्स में डिफरेंशियल मेटाबोलाइट की अभिव्यक्ति

Differential metabolite expression in healthy and geminivirus agroinfiltrated leaf tissue in amiRNA expressing transgenics

JLCuGV एग्रोइन्फिल्ट्रेशन के साथ और बगैर, WT (सामान्य पौधा) और amiRNA ट्रांसजेनिक्स दोनों में मेटाबोलाइट विश्लेषण किया गया। स्वस्थ और वायरस प्रविष्ट ऊतकों दोनों में इक्कीस सामान्य मेटाबोलाइट्स पाये गए। खोजे गए मेटाबोलाइट्स को आठ अलग-अलग समूहों में वर्गीकृत किया गया; एल्केन्स, अमीनो अम्ल, कार्बोक्सिलक अम्ल, वसा अम्ल, वसा अल्कोहल, पॉलीओल्स, पॉलीफेनोल्स और शर्करा। शर्करा सबसे बड़ा समूह है, उसके बाद कार्बोक्सिलक अम्ल और पॉलीओल्स पाये गए। WT में, शर्करा की सांद्रता स्वस्थ ऊतक (54%) की तुलना में जेमिनीवायरस प्रविष्ट (68%) ऊतकों में अधिक थी, जबिक कार्बोक्सिलक अम्ल संक्रमित ऊतक (6%) की तुलना में स्वस्थ (19%) ऊतकों में अधिक पाया गया। C1/C4 ट्रांसजेनिक्स में, स्वस्थ और वायरस प्रविष्ट ऊतकों में शर्करा (क्रमश: 21% और 28%), कार्बोक्सिलक अम्ल (क्रमश:


Metabolite analysis was performed in both WT (normal plant) and amiRNA transgenics with and without JLCuGV agroinfiltration. Twentyone common metabolites were detected in both healthy and virus-infiltrated tissue. The detected metabolites were categorized into eight different groups; alkenes, amino acids, carboxylic acids, fatty acids, fatty alcohols, polyols, polyphenols, and sugars. formed the largest group, followed by carboxylic acids and polyols. In WT, the concentration of sugar was more in geminivirus infiltration (68%) than the healthy tissue (54%), while the carboxylic acids were more in healthy (19%) than in infected tissue (6%). In C1/C4 transgenics, healthy and virus infiltrated tissue showed less change in concentration of sugars (21% and 28%, respectively), carboxylic acids (36% and 34%,

36% और 34%), और पॉलीओल्स (क्रमशः 38% और 33%) की सांद्रता में कम परिवर्तन देखा गया। इसके अलावा, C2/C3 ट्रांसजेनिक्स में, स्वस्थ और वायरस प्रविष्ट ऊतकों ने शर्करा (क्रमशः 39% और 41%), कार्बोक्सिलक अम्ल (क्रमशः 27% और 21%), और पॉलीओल्स (क्रमशः 32% और 30%) के सांद्रता में कम परिवर्तन दिखाया। जबिक V1/V2 ट्रांसजेनिक्स में, शर्करा की सांद्रता स्वरःथ ऊतक (40%) की तुलना में जेमिनीवायरस प्रविष्ट (56%) में अधिक थी, यद्यपि कार्बोक्सिलिक अम्ल संक्रमित ऊतक (11%) की तूलना में स्वस्थ (25%) में अधिक थे। पॉलीफेनोल्स, वसा अम्ल, वसा अल्कोहल, एल्केन्स और अमीनो अम्ल जैसे अन्य कंपाउंड स्वस्थ और संक्रमित ऊतक वाले WT और ट्रांसजेनिक्स दोनों में 6% से कम थे। amiRNA ट्रांसजेनिक्स में, वी1/वी2 ट्रांसजेनिक्स को छोड़कर, स्वस्थ और वायरस प्रविष्ट ऊतकों में मेटाबोलाइट्स की सांद्रता में कोई महत्वपूर्ण परिवर्तन नहीं देखा गया। WT, C2/C3, और V1/V2 ट्रांसजेनिक्स में, फ़ुक्टोज, और ग्लूकोज मात्रा में, प्रविष्ट के सापेक्ष WT में क्रमशः 8.76-गुना और 8.10-गुना की अधिकतम वृद्धि हुई। हालांकि, C1/C4 में वायरस प्रविष्टि पर फ़ुक्टोज और ग्लूकोज की मात्रा में कमी देखी गई। ट्रांसजेनिक्स (1.19-गुना से 1.26-गुना) में सुक्रोज मात्रा में वृद्धि हुई, जबिक वायरस प्रविष्ट WT में 1.95-गुना की कमी आई। C1/C4 और C2/C3 ट्रांसजेनिक्स में मैलिक और क्विनिक अम्ल की मात्रा बढ गई, जबिक वायरस प्रविष्टि पर WT और V1/V2 ट्रांसजेनिक्स में कमी आई। क्विनिक अम्ल मात्रा में क्रमशः 3.15-गुना की उल्लेखनीय वृद्धि और C2/C3 और V1/V2 ट्रांसजेनिक्स में क्रमशः 4.29-गुना की कमी देखी गई। पाइरुविक एसिड की WT और ट्रांसजेनिक दोनों में कमी दिखी, जिसमें वायरस प्रविष्टि पर WT में 17.7-गुना की उल्लेखनीय कमी आई। WT, C2/C3, और V1/V2 ट्रांसजेनिक्स में, मायो-इनोसिटोल मात्रा (1.23 से 2.22-गुना) में वृद्धि देखी गई। WT और ट्रांसजेनिक दोनों में ग्लिसरॉल की मात्रा वायरस प्रविष्टि पर C1/C4 ट्रांसजेनिक्स में अधिकतम 4.77 गुना की कमी के साथ घट गई।

respectively), and polyols (38% and 33%, Also, in C2/C3 transgenics, respectively). healthy and virus infiltrated tissue showed less change in concentration of sugars (39% and 41%, respectively), carboxylic acids (27 % and 21 %, respectively), and polyols (32 % and 30 %, respectively). While in V1/V2 transgenics, the concentration of sugar was more in geminivirus infiltration (56%) than the healthy tissue (40%), albeit the carboxylic acids were more in healthy (25%) than infected tissue (11%). The other compounds like polyphenols, fatty acids, fatty alcohols, alkenes and amino acids were less than 6% in both WT and transgenics with healthy and infected tissue. amiRNA transgenics, except V1/V2 transgenics, no significant changes were observed in the concentration of metabolites in healthy and virus-infiltrated tissues. In WT, C2/C3, and V1/V2 transgenics, fructose, and glucose content increased, with a maximum increase of 8.76-fold and 8.10-fold, respectively, in WT on infiltration. The C1/C4, however, showed a decrease in fructose and glucose content on virus infiltration. The sucrose content increased in transgenics (1.19 -fold to 1.26 -fold), whereas decreased by 1.95 -fold in WT with virus infiltration. The malic and quinic acid content increased in C1/C4 and C2/C3 transgenics, whereas decreased in WT and V1/V2 transgenics on virus infiltration. The quinic acid content showed a noticeable increase of 3.15 -fold and a decrease of 4.29 fold in C2/C3 and V1/V2 transgenics, respectively. The pyruvic acid showed a decrease in both WT and transgenics, with a notable decrease of 17.7 -fold in WT on virus infiltration. In WT, C2/C3, transgenics, an increase in myo-inositol content (1.23 to 2.22 -fold) was observed. The glycerol content decreased in both WT and transgenics with a maximum decrease of 4.77 -fold in C1/C4 transgenics on virus infiltration.

चित्र: (ए) WT (सामान्य पौधा), (बी) C1/C4, (सी) C2/C3 और (डी) V1/V2 amiRNA ट्रांसजेनिक्स के साथ और बिना (नियंत्रण) JLCuGV एग्रोइनफिल्ट्रेशन में विभिन्न मेटाबोलाइट्स प्रतिक्रिया की तुलना।

Figure: Comparison of different metabolites response in (a) WT, (b) C1/C4, (c) C2/C3 and (d) V1/V2 amiRNA transgenics with and without (control) JLCuGV agroinfiltration.

तिल में पुनर्जनन का मानकीकरण Standardization of Regeneration in sesame

तिल कृषि अनुसंधान केंद्र अमरेली (जूनागढ़ कृषि विश्वविद्यालय) से सोलह तिल के बीजों की किस्में एकत्र की गई। सभी किस्मों का मूल्यांकन उनकी लवणता सहिष्णुता के लिए किया गया और इन 16 किस्मों को तीन लाइनों; कम लवणता, मध्यम लवणता और उच्च लवणता सहिष्णुता के रूप में वर्गीकृत किया गया। पुनर्जनन के विभिन्न मापदंडों को कम लवणता, मध्यम लवणता वाले तिल (सीवी जीटी-3 और जीटी-4) के डी-भ्रूणयुक्त बीजपत्रों का प्रयोग करके प्रत्यक्ष शूट ऑर्गेनोजेनेसिस के माध्यम से इन-विट्रो प्लांट पुनर्जनन के लिए एक कुशल प्रोटोकॉल विकसित करने के लिए मानकीकृत किया गया। 3% स्क्रोज (w/v) और 0.8% अगर (w/v) से पूरित पूर्ण-शक्ति वाले बेसल MS माध्यम का उपयोग करके सभी प्रयोग किए गए, जबकि बीज अंकुरण में ½ MS माध्यम (आधा- शक्ति MS लवण, 1.5% w/v स्क्रोज और 0.6% w/v अगर) का उपयोग किया गया। सभी पुनर्जनन प्रयोगों के लिए, अंकुरित अंकुरों से 0 से 5 दिन प्राने डी-भ्रूणयुक्त बीजपत्रों का उपयोग एक्सप्लांट के रूप में किया गया और बीएपी हॉर्मोन की विभिन्न सांद्रता पर संवर्धित किया गया। यह देखा गया है कि पुनर्जनन में तिल बहुत ही कठिन प्रजाति है। हमें विभिन्न हार्मोन संयोजनों में लगभग 30% पुनर्जनन दक्षता मिली।

Seeds of sixteen sesame varieties were collected from the sesame agriculture research station, Amreli (Junagadh Agriculture University). The types were evaluated for their salinity tolerance and out of these 16 types, three lines were classified as low salinity, medium salinity and higher salinity tolerance. Different parameters of regenerations were standardized to develop an efficient protocol for in-vitro plant regeneration via direct adventitious shoot organogenesis using deembryonated cotyledons of low salinity, medium salinity sesame (cv GT-3 and GT-4) as explants. All the experiments were carried out using full-strength basal MS supplemented with 3% sucrose (w/v) and 0.8% agar (w/v) except for seed germination, where 1/2 MS medium (half-strength MS salts, 1.5% w/v sucrose and 0.6% w/v agar) was used. For all the regeneration experiments, o to 5-day-old de-embryonated cotyledons from germinated seedlings were used as explants and cultured at different concentration of BAP hormone. It is observed that sesame is a very recalcitrant species regeneration. approximately 30% regeneration efficiency in different hormone combinations.

समुद्री शैवाल के अर्क के उपयोग द्वारा मैक्रोफोमिना फेजोलिना के विरुद्ध जीन नियंत्रण का अध्ययन करने के लिए टमाटर के पौधे का टैनस्क्रिप्टोमिक्स विश्लेषण

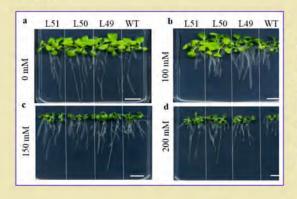
Tanscriptomics analysis of tomato plant to study the gene regulation against Macrophomina phaseolina by usage of Seaweed extract

एम. फेसियोलीना के साथ 10% समुद्री शैवाल के अर्क (SE) के उपचार ने तनाव प्रेरक सैलिसिलिक अम्ल (SA), और एब्सिसिक अम्ल (ABA) के स्तर को बदलने में सहायता की। एंटीऑक्सिडेटिव एंजाइम जिसमें SOD, CAT, GR, APX और POX शामिल है, ने संयुक्त उपचार में अधिकतम संचय दिखाया। पहले के एक प्रयोग के परिणाम ने संकेत दिया कि समुद्री शैवाल का अर्क (SE), बायो-एलिसिटर के रूप में काम कर सकता है और टमाटर के पौधों में एम. फेसियोलीना के खिलाफ प्रतिरोध प्रदान कर सकता है। जैव-उत्तेजक के रूप में SE के आणविक तंत्र को स्पष्ट करने के लिए, चार उपचार संयोजनों 1. नियंत्रित (नियंत्रण पादप को विसंक्रामित जल से उपचारित किया गया); 2. 10% SE पर्ण इस्तेमाल; 3. मैक्रोफोमिना उपचार 4. 10% SE+मैक्रोफोमिना उपचार (SE के पत्ते स्प्रे के साथ ऊपर वर्णित कवक उपचार) के ट्रांस्क्रिप्टोम सिक्वेंसिंग किये गए। विभिन्न उपचार जोडे में नियंत्रित डिफरेंशियली अभिव्यक्त जीन (डीईजी) की पहचान की गई। कई डीईजी, जैसे रिसेप्टर-जैसे काइनेसेस (आरएलके), ट्रांसक्रिप्शन कारक. रोगजनन-संबंधी प्रोटीन और एंटीऑक्सिडेंट एंजाइमों के लिए जीन को मैक्रोफोमिना+SE उपचारित नम्ने में केवल मैक्रोफोमिना उपचारित नमूने की तूलना में अप-नियंत्रित पाया गया। टमाटर-मैक्रोफोमिना परस्पर क्रिया में प्रतिरोध को नियंत्रित करने के लिए SA. जैस्मोनिक अम्ल (जेए) और एथिलीन (ईटी) के बीच क्रॉसटॉक एक महत्वपूर्ण कारक था। अध्ययन ने सुझाव दिया कि SE एक एलिसिटर अणु के रूप में कार्य करता है और टमाटर के पौधों में पीएएमपी-टिगर प्रतिरक्षा के समान रक्षा-संबंधी मार्गों को सक्रिय करता है। जैरमोनिक अम्ल (जेए) मध्यस्थ सिग्नलिंग मार्ग को मैक्रोफोमिना संक्रमण के खिलाफ टमाटर के पौधों में प्रणालीगत अधिग्रहित प्रतिरोध (एसएआर) को शामिल करने के लिए एक महत्वपूर्ण मार्ग के रूप में पहचाना गया।

The treatment of 10% seaweed extract (SE) combined with M. Phaseolina altered the level of stress inducible salicylic acid (SA), and abscisic acid (ABA). Antioxidative enzymes including SOD, CAT, GR, APX and POX showed maximum accumulation in treatment. The result of an earlier experiment indicated that SE can serve as a bio-elicitor and provide resistance against M. phaseolina in tomato plants. To elucidate the molecular mechanism SE as bio-stimulant. transcriptome sequencing of four treatment combinations, 1. control (control plants were treated with sterilized water); 2. 10% SE foliar application; 3. Macrophomina treatment 4. 10% SE+Macrophomina treatment (fungal treatment described above along with a foliar spray of SE) were carried out. The differentially expressed genes regulated across the different treatment pairs were identified. Several DEGs, such as receptor-like kinases (RLKs), transcription factors, pathogenesis-related proteins and genes for antioxidative enzymes were significantly up-regulated in Macrophomina + SE treated sample as compared to only Macrophomina treated sample. The crosstalk between SA, jasmonic acid (JA) and ethylene (ET) was a key factor to regulate resistance in tomato-Macrophomina interaction. The study suggested the SE act as an elicitor molecule and activated the defense-related pathways similar to PAMP-triggered immunity in tomato plants. The jasmonic acid (JA) mediated signaling pathway was identified as a key pathway for induction of systemic acquired resistance (SAR) in tomato plants against Macrophomina infection.

रेक्रेटोहेलोफाइट एलुरोपस लैगोपोइड्स से AINAC1 एक ABA मध्यस्थ मार्ग के माध्यम से ट्रांसजेनिक तंबाकू में सूखा तनाव

AlNAC1 from recretohalophyte Aeluropus lagopoides imparts drought stress in transgenic tobacco via an ABA mediated pathway


AINAC1, एक NAP-जैसा TF, जिसे एक रेक्रेटोहेलोफाइट एल्रोपस लैगोपोइड्स, से अलग किया गया, 375 अमीनो अम्लों को कूटबद्ध करता है। वर्गानुवंशिक वृक्ष विश्लेषण से पता चलता है कि यह मोनोकॉट्स से एनएसी टीएफ के साथ क्लस्टर हो जाता है, आगे यह संरक्षित एनएसी डोमेन और पोस्ट-टांसलेशनल संशोधन साइटों के भीतर द्विदलीय नाभिकीय स्थानीयकरण अनुक्रम रखता है। पुनः संयोजक AINAC1 प्रोटीन ने erd1 प्रमोटर के सिस-तत्वों के साथ बंधन दिखाया। तंबाकू ट्रांसजेनिक्स AINAC1 की अतिअभिव्यक्ति करते हुए सूखा सहनशीलता में वृद्धि दिखाई, जो बेहतर विकास, बढ़ी हुई झिल्ली स्थिरता और ऑरमोप्रोटेक्टेंट सांद्रता, आरओएस संचय में कमी और ट्रांसजेनिक्स में कई तनाव-प्रतिक्रियाशील जीनों का अपनियंत्रण के साथ सहसंबद्ध हो सकते है। इसके अलावा, घटे हुए आरओएस संचय के माध्यम से आरओएस समस्थापन का स्थिर रहना, कोशिकीय आरओएस के विषहरण एवं झिल्ली और प्रकाश संश्लेषण मशीनरी को नुकसान को संरक्षित करने के लिए, आरओएस सफाई प्रणाली के एक व्यापक सक्रियण को इंगित करता है। जैसा कि एसओडी, सीएटी, एमएसआई स्तर और एसओडी, सीएटी और एलटीपी1 जीन प्रतिलेख में वृद्धि और ट्रांसजेनिक के ईएल और एमडीए में कमी से संकेत मिलता है। सूखे और पुनर्प्राप्ति चरण के दौरान प्रकाश संश्लेषण और प्रतिदीप्ति मापदंडों के व्यापक विश्लेषण से पता चला है कि ट्रांसजेनिक पौधों में WT पौधों की तुलना में प्रकाश संश्लेषक उपकरण की क्षति कम थी और तेजी से मरम्मत हो गयी, जैसा कि प्रकाश संश्लेषक वर्णक के अनुरक्षित स्तर और प्रकाश संश्लेषण के कार्य पद्धति में परिलक्षित होता है। इसके अलावा ट्रांसजेनिक्स ने सूखे के दौरान बंद रंध्रों की संख्या में वृद्धि दिखाई, जिसे वर्धित अन्तःविकसित एब्सिसिक एसिड (एबीए) से जोड़ा जा सकता है, जो ट्रांसजेनिक्स में एबीए-

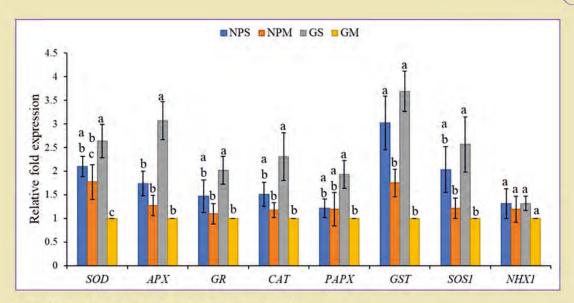
The AlNAC1, a NAP-like TF isolated from a recretohalophyte Aeluropus lagopoides, encodes 375 amino acids. The phylogenetic tree analysis reveals that it gets clustered with NAC TFs from monocots, further it possesses a bipartite nuclear localization sequence within the conserved NAC domain and posttranslational modification sites. recombinant AINAC1 protein showed binding to cis-elements of erd1 promoter. The tobacco transgenics overexpressing AINAC1 showed increased drought tolerance that can be correlated with better growth, increased membrane stability and osmoprotectant concentration, decreased ROS accumulation and upregulation of many stress-responsive transgenics. Furthermore, maintenance of ROS homeostasis decreased ROS accumulation indicates a comprehensive activation of the scavenging system to detoxify cellular ROS and preserve damage to membrane and photosynthesis machinery as indicated by increased SOD, CAT, MSI level and SOD, CAT and LTP1 gene transcript and decreased EL and MDA of transgenic. The comprehensive analysis of photosynthesis and fluorescence parameters during the drought and recovery phase showed that damage to the transgenics photosynthetic apparatus was less and rapidly repaired as compared to WT plants, as reflected in the maintained level photosynthetic pigments and functioning of photosynthesis. Also, the transgenics showed an increased number of closed stomata during the drought that can be correlated to the enhanced endogenous abscisic acid (ABA), indicating ABA-regulated stomatal movement

नियंत्रित रंध्र संचलन को दर्शाता है। इस प्रकार AINAC1 एबीए की मध्यस्थता वाले मार्ग में सूखा सहिष्णुता प्रदान कर सकता है।

in transgenics. Thus AlNAC1 might be imparting drought tolerance in an ABA mediated pathway.

चित्र: a) 0 mM, b) 100 mM, c) 150 mM, d) 200 mM मैनिटोल युक्त एमएस माध्यम में WT और ट्रांसजेनिक लाइनों की जड़ बढ़ाव परख।

Figure: Root elongation assay of WT and transgenic lines grown on MS medium containing a 0 mM, b 100 mM, c 150 mM, d 200 mM mannitol.


Environmental and Experimental Botany 181 (2021) 104277

विभिन्न लवणता उपचारों के प्रभाव में उगाए गए सैलिकॉर्निया ब्रेकिएटा के एंटीऑक्सिडेंट और ट्रांसपोर्टर जीन का प्रतिलेख अभिव्यक्ति विश्लेषण

Transcript expression analysis of antioxidant and transporter genes of Salicornia brachiata grown under different salinity treatments

सैलिकॉर्निया ब्रेकिएटा को विभिन्न लवणता उपचारों (विभिन्न मिट्टी और सिंचाई का पानी) (एनपीएस: लवणीय मिट्टी + समुद्री जल; एनपीएम: लवणीय मिट्टी + नल का पानी; जीएस: अलवणीय मिट्टी + समुद्री जल; और जीएम: अलवणीय मिट्टी+ नल का पानी) के प्रभाव में उगाया गया। सैलिकॉर्निया के पौधों को पूष्पण अवस्था में एकत्र किया गया और जीन के प्रतिलेख अभिव्यक्ति विश्लेषण के लिए उपयोग किया गया। एंटीऑक्सीडेंट (एसओडी, एपीएक्स, जीआर, सीएटी, पीएपीएक्स और जीएसटी) और ट्रांसपोर्टर (एसओएस1 और एनएचएक्स1) जीन की ट्रांसक्रिप्ट अभिव्यक्ति का विश्लेषण किया गया। चार एंजाइमों [कैटालेस (सीएटी), गुआयाकोल परॉक्सीडेज (जीपीओएकास), स्परऑक्साइड डिसम्यूटेज (एसओडी), ग्लूटाथायोन रिडक्टेस (जीआर)] और एमडीए के साथ-साथ H2O2 मात्रा की गतिविधियों को भी मापा गया। एसओडी (एनपीएस को छोड़कर), एपीएक्स, जीआर (एनपीएस को छोड़कर), सीएटी (एनपीएस को छोड़कर), पीएपीएक्स (एनपीएस और एनपीएम को छोड़कर), जीएसटी (एनपीएस को छोड़कर)

The seeds of Salicornia brachiata were grown under different salinity treatments (different soil and irrigation water) (NPS: saline soil + sea water; NPM: saline soil + tap water; GS: nonsaline soil + sea water; and GM: non-saline soil + tap water). Salicornia plants were collected at the flowering stage and used for transcript expression analysis of the genes. The transcript expression of antioxidant (SOD, APX, GR, CAT, PAPX and GST) and transporter (SOS1 and NHX1) genes were analyzed. The activities of four enzymes [Catalase (CAT), Guaiacol peroxidase (GPOX), Superoxide dismutase (SOD), Glutathione reductase (GR)] and MDA as well as H2O2 contents were also measured. The transcript levels of SOD (except NPS), APX, GR (except NPS), CAT (except NPS), PAPX (except NPS and NPM), GST (except NPS) and SOS1 (except NPS) genes were significantly higher in GS treatment plants. Significantly high activities

चित्रः एंटीऑक्सीडेंट और ट्रांसपोर्टर जीन की सापेक्ष अभिव्यक्ति।

Figure: Relative fold expression of antioxidant and transporter genes.

और एसओएस1 (एनपीएस को छोड़कर) जीन के ट्रांसक्रिप्ट स्तर जीएस उपचारित पौधों में महत्वपूर्ण रूप से अधिक थे। एनपीएस और जीएस उपचार पौधों में सीएटी की, जीएस पौधों में जीपीओएक्स और एनपीएस पौधों में जीआर की महत्वपूर्ण उच्च गतिविधियां दर्ज की गई। हालांकि एसओडी की गतिविधि में कोई महत्वपूर्ण अंतर नहीं पाया गया। इसके विपरीत, हमने जीएम में काफी अधिक एमडीए मात्रा देखी, जबिक एनपीएम और जीएम पौधों में H2O2 मात्रा अधिक थी। इसके अलावा, सभी चार उपचारित मिट्टी की विद्युत चालकता (नमक सांद्रता) मापी गयी। उच्चतम मुदा विद्युत चालकता (ईसी) जीएस उपचार के बाद दर्ज की गई उसके बाद एनपीएस, एनपीएम और जीएम उपचारों में। वर्तमान अध्ययन के परिणामों से पता चला है कि सैलिकॉर्निया ब्रेकिएटा में कुशल नमक सहिष्णुता तंत्र है क्योंकि आरओएस सफाई और एसओएस1 जीन की सापेक्ष अभिव्यक्ति जीएस उपचार पौधों (मिट्टी में उच्चतम लवणता थी) के बाद एनपीएस उपचारों में सबसे अधिक पाई गई।

of CAT were recorded in NPS and GS treatment plants, GPOX in GS plants and GR in NPS plants. However, no significant difference was found in the activity of SOD. Conversely, we observed significantly highest MDA content in GM plants, while H2O2 content in NPM and GM plants. Furthermore, the soils of all four treatments were measured for electrical conductivity (salt concentration). The highest soil electrical conductivity (EC) was reported in GS treatment followed by NPS, NPM and GM treatments. The results of the present study showed that Salicornia brachiata has an efficient salt tolerance mechanism because the relative expression of ROS scavenging and SOS1 genes were found highest in GS treatment plants (soil had the highest salinity) followed by NPS plants.

Painting by...

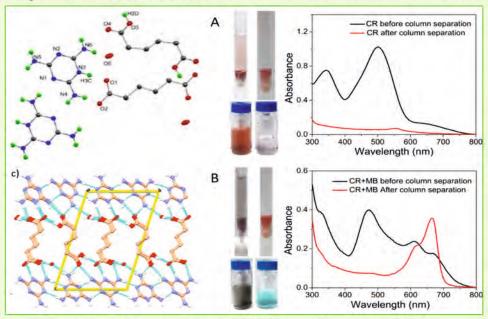
डॉ. सोनम दुबे, सीएसआईआर आरए Dr. Sonam Dubey, CSIR RA

पर्यावरण

Environment

आर्थिक विकास से उत्पन्न पर्यावरण प्रदेषण नए संदेषकों की पहचान और उपचार के लिए एक चुनौतीं पेश करते हैं. जो हर दिन वैश्विक स्तर पर उभर रहे हैं। घरेलू, औद्योगिक और कृषि अपशिष्ट और अन्य अपशिष्ट जिनमें सूक्ष्म प्रदुषक जैसे, हार्मोन, फार्मास्यूटिकल्स, कीटनाशक, व्यक्तिगत देखभाल उत्पाद, रंजक और विभिन्न अन्य औद्योगिक रसायनों के साथ-साथ उनके प्रकाश-अपघटय उप-उत्पाद शामिल हैं, कम सांद्रता पर भी हानिकारक प्रभाव डालते हैं। विभिन्त दृष्टिकोणों से मानवीय गतिविधियों और पर्यावरणीय समस्याओं के बीच संबंधों को व्यापक रूप से समझने के लिए संस्थान के पास सामाजिक से लेकर प्राकृतिक विज्ञान तक का समृद्ध ज्ञान है। इसके साथ, संस्थान विशेष संदर्भ में नियामक शुन्य तरल निर्वहन (जेडएलडी) मानदंड़ों के साथ चर्म शोधन एवं वस्त्र उद्योग के सामान्य बहि:स्नाव उपचार संयंत्र, रिवर्स ऑस्मोसिस (आरओ) रिजेक्ट, अल्कोहल आसवनी स्पेंट-वॉश, रंजक मध्यवर्ती बहिःस्राव आदि के क्षेत्र में अपशिष्ट प्रबंधन से संबंधित समाधान प्रदान करके उद्योगों को अपनी सहायता प्रदान करता है। हम नियमित तरीके से पर्यावरणीय प्रभाव मूल्यांकन एवं इस उद्देश्य के लिए नवीन उपकरणों और समाधानों के माध्यम से देश की सेवा करते हैं। इसके अलावा, संस्थान अलग-अलग पर्यावरण प्रदूषकों के संवेदन के लिए सरल और तेजी से पता लगाने वाली किट के विकास के लिए लगातार काम कर रहा है। सीएसआईआर-सीएसएमसीआरआई को भारतीय गुणवत्ता परिषद (क्यूसीआई) द्वारा राष्ट्रीय शिक्षा और प्रशिक्षण प्रत्यायन बोर्ड योजना (एनएबीईटी) के तहत पर्यावरण प्रभाव आकलन (ईआईए) अध्ययन करने और 4 विभिन्न क्षेत्रों में पर्यावरण प्रबंधन योजना (ईएमपी) तैयार करने के लिए मान्यता दी गयी है। ये क्षेत्र हैं (ए) आसवनी, (बी) बंदरगाह, तरंगरोध और तलकर्षण, (सी) जहाज तोड़ने वाली इकाइयों सहित सभी जहाज तोड़ने वाले यार्ड और (डी) सामान्य अपशिष्ट उपचार संयंत्र। इस संक्षेप के साथ, हम इस विषय पर 2020-21 के दौरान की गई कुछ प्रमुख गतिविधियां प्रस्तुत कर रहे हैं।

Economic growth leading to environmental pollution posed a challenge for the identification and remediation of various new contaminants that are emerging globally on an every-day basis. The municipal, industrial and agricultural effluents and other wastes comprising the micro-pollutants, including hormones, pharmaceuticals, pesticides, personal care products, dyes and various other industrial chemicals along with their photolytic by-products, have detrimental effects even at low concentrations. The institute has rich knowledge acquired from the social to the natural sciences for comprehensively understanding the relationship between human activities and environmental problems from various point of view. With that, the institute extends its assistance to industries by providing solutions to waste management issues in the area of tannery & textile common effluent treatment plants, reverse osmosis (RO) reject, alcohol distillery spent wash, dye intermediate effluents, etc. with special reference to value recovery within the ambit of regulatory zero liquid discharge (ZLD) norms. We serve the country through environmental impact assessment in a routine manner and innovate tools and solutions for the purpose. Further, the institute has been constantly working



on the development of simple and rapid detection kits for sensing distinct environmental pollutants. CSIR-CSMCRI has been accredited by the Quality Council of India (QCI) under the National Accreditation Board for Education and Training scheme (NABET) to undertake Environment Impact Assessment (EIA) studies and prepare the Environmental Management Plan (EMP) in 4 different sectors. These sectors are (a) Distilleries, (b) Ports & harbors, breakwaters and dredging, (c) All ship breaking yards including ship breaking units and (d) Common effluent treatment plants. With this brief, we are presenting some of the salient activities undertaken during 2020-21 on this theme.

अपशिष्ट जल से आयनिक रंजको के अधिशोषण-निवारण हेतु स्व-समूहित मेलमिनियम एडिपेट लैमेली

Self-assembled melaminium adipate lamellae for adsorptive removal of anionic dyes from wastewater

बिस(मेलेमिनियम)एडिपेट एडिपिक अम्ल (बीएमए), एक नई आयनिक कार्बनिक तंत्र को सस्ते औद्योगिक रूप से उपयोग किए जाने वाले मेलामाइन और एडिपिक अम्ल से संश्लेषित किया गया। समग्र अधिशोषक-अधिशोष्य सहयोग में सुधार के लिए, बीएमए वैद्युतस्थैतिक परस्पर क्रिया के अलावा, अधिशोषक अणुओं के साथ कई हाइड्रोजन बांड बना सकता Bis(melaminium)adipate adipic acid (BMA), a new ionic organic system has been synthesized from inexpensive industrially used melamine and adipic acid. BMA can form multiple hydrogen bonds with adsorbate molecules, in addition to electrostatic interactions, to improve the overall adsorbate-

चित्र: बीएमए की क्रिस्टल संरचना और इस पर अपशिष्ट जल से आयनिक रंजकों का चयनात्मक अधिशोषण। Figure: Crystal structure of BMA and selective adsorption of anionic dyes from waste water on it.

है। मेलामिनियम एडिपेट शीट बीएमए की लैमेलर संरचना में उभरे अन्तर्रपरत एडिपिक अम्ल द्वारा परस्पर जुड़ी होते हैं। रंजक अधिशोषण की क्षमता बढ़ाने के लिए इस तरह की संरचना की परिकल्पना की गई है। हालांकि बीएमए एक समग्र रूप से विद्युत उदासीन तंत्र है, जीटा (८) - विभव मापन धनावेशित सतह इंगित करता है, जो संभवतः सतह पर मेलेमिनियम अंश की उपस्थिति के कारण होता है। बीएमए संपूर्ण pH रेंज में पानी से ऋणायनिक रंजकों के निष्कासन की दिशा में एक प्रबल बन्धुता प्रदर्शित करता है। अधिशोषक को कई चक्रों तक पुनः उपयोग किया जा सकता है क्योंकि अधिशोषित रंजक आसानी से मेथनॉल में विशोषण किया जा सकता है। मेलामाइन और एडिपिक अम्ल दोनों जैवअपघटनीय हैं, इसलिए क्षीण अधिशोषक के कारण द्वितीयक अपशिष्ट उत्पन्न नहीं होता है।

adsorbent cooperation. Melaminium adipate sheets are interconnected by interlayer adipic acid culminating in the lamellar structure of BMA. Such a structure is envisaged to enhance its ability for dye adsorption. Though BMA is an overall electrically neutral system, zeta (ζ)-potential measurements indicate a positively charged surface, presumably due to the presence of melaminium moieties on the surface. BMA displays a predominant affinity toward the removal of anionic dyes from water over the entire pH range. The adsorbent can be reused for several cycles as the adsorbed dye can easily desorb in methanol. Both melamine and adipic acid biodegradable, hence secondary waste generation due to the spent adsorbent is precluded.

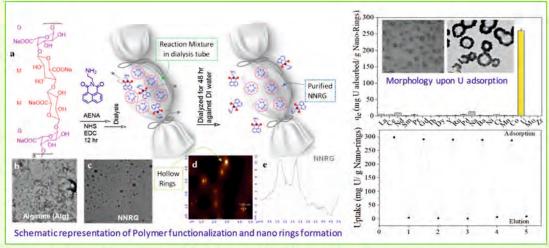
ACS Appl. Polym. Mater 03 (2021) 651-660

द्वितीयक स्रोतों से यूरेनियम की प्राप्ति Recovery of uranium from its secondary sources

यूरेनियम (U) परमाणु ऊर्जा का शक्तिश्रोत है। इसलिए, यूरेनियम की एक सतत आपूर्ति के लिए, उपयुक्त सामग्री को पहचानने और U की द्वितीयक स्रोतों, अर्थात अम्लीय अपशिष्ट (यूईए) (खदान अवशेष, संश्विष्ट परमाणु अपशिष्टों), और समुद्री जल (यूईएस) से पुनर्प्राप्त करने की आवश्यकता है।

यूईए: हमने रिसेप्टर प्रकार्यत्मकता (एईएनए) के अनुकूल स्थानिक अभिविन्यास के साथ एक खुला ढांचा नैनो-वलय आकारिकी (NNRG) तैयार की है, जो एक संबद्ध टर्न-ऑन संदीप्ति प्रतिक्रिया के साथ प्रभावी ढंग से U को चिलेट करता है, और संश्विष्ट परमाणु प्रवाह से 268 मिलीग्राम U/g NNRG का उल्लेखनीय अधिशोषण प्रदान करता है। यह खुला ढांचा आर्किटेक्चर अधिशोषण के माध्यम से आयनों के तेजी से विसरण के लिए एक पारगम्य नेटवर्क प्रदान करता है। संयुग्मित एईएनए का π -इलेक्ट्रॉन बादल डेबीए

Uranium (U) is the workhorse of nuclear energy. Therefore, for a sustainable supply of uranium, appropriate materials are required to be recognised and U need to be recovered from the secondary sources, i.e. from acidic effluents (UEA) (mine tailings, synthetic nuclear effluents), and from seawater (UES). UEA: We have prepared an open framework nano-ring morphology (NNRG) favourable spatial orientation of receptor functionality (AENA), which effectively chelate U with an associated turn-on luminescence response, provides remarkable that adsorption of 268 mg U /g NNRG from synthetic nuclear effluent. This framework architecture provides a permeable network for faster diffusion of ions through the adsorbent. The π -electron cloud of conjugated AENA forms an electrical double



मोटाई (λD) <1 nm के साथ एक विद्युत दोहरी परत बनाता है, जो बंधन स्थान के आसपास प्रतिआयनों की सांद्रता के स्थानीयकरण में मदद करता है। बंधन प्रक्रिया की उत्क्रमणीयता, साथ ही साथ लगातार 5 चक्रों के लिए इस अभिकर्मक की UO_2^{2+} आयन स्केवेंजर के रूप में प्रभावकारिता स्थापित की गई।

यूईएस: समुद्री जल (यूईएस) से U के निष्कर्षण को कई रासायनिक पृथक्करणों में से एक के रूप में पहचाना गया है जहां प्रगति से वैश्विक लाभ होगा। समुद्री जल एक जटिल मैट्रिक्स है जिसमें U (~ 3.3 पीपीबी) की अति-निम्न सांद्रता तथा अन्य प्रतिस्पर्धी धनायनों की एक बहुतायता, बहुत अधिक आयनिक समर्थ और अत्यधिक pH स्थितियां होती हैं। यूईएस के लिए लागत प्रभावी सामग्री और ऊर्जा कुशल पृथक्करण प्रक्रिया को डिजाइन करना महत्वपूर्ण है। यह कार्य यूईएस के लिए सामग्री डिजाइन में प्रवृत्ति पर प्रकाश डालता गया है, और हमने पहचाना है कि मैक्रो स्केल से माइक्रो से नैनो से नैनो-पोरस सामग्री तक में एक प्रतिमान बदलाव है। एक अन्य पहलू यूरेनिल आयनों के साथ अन्य ऊर्जा खनिजों की सहउगाही या अधिशोषण के साथ विद्युत रासायनिक प्रक्रियाओं के संयोजन से अधिशोषण की यूईएस दक्षता को बढ़ाने के लिए है।

layer with Debye thickness (λD) <1 nm, which helps in localizing the concentration of counter ions in the vicinity of the binding site. Reversibility of the binding process, as well as the efficacy of this reagent as a $U0_2^{2+}$ ion scavenger was established for 5 consecutive cycles.

UES: U extraction from seawater (UES) is identified as one of among the several chemical separations where progress would lead to global gains. Seawater is a complex matrix with an ultra-low concentration of U (~3.3 ppb) and an abundance of other competing cations, very high ionic strength, and extreme pH conditions. It is crucial to design cost-effective materials and energyefficient separation process for UES. This work highlights the trend in material design for UES, and we have identified that there is a paradigm shift from macro scale to micro to nano to nano-porous materials. Another aspect is the symbiotic recovery of other energy minerals with uranyl ions or combining electrochemical processes with adsorption to increase the UES efficiency of adsorbents.

चित्रः बहुलक नैनो-वलय का उपयोग करके अम्लीय प्रवाह से यूरेनियम का निष्कर्षण।

Figure: Uranium recovery from acidic effluent using polymeric nano-rings.

ACS Sens. 05 (2020) 3254-3263; Chem 07 (2021) 271-280

जलीय बहिःस्राव से शुद्ध लाख राल के चयनात्मक निष्कर्षण की प्रक्रिया Process of selective extraction of pure lac resin from the aqueous effluent

लाख एक प्राकृतिक राल है जो मुख्य रूप से भारत, थाईलैंड, चीन और इंडोनेशिया में पाए जाने वाले कुछ पेड़ों पर छोटे लाख कीड़ों द्वारा स्नावित होता है। इसकी गैर-विषाक्त और जैवअपघटनीय प्रकृति के कारण, इसका उपयोग औषधि, सौंदर्य प्रसाधन और सतह कोटिंग्स उद्योगों में विभिन्न अनुप्रयोगों के लिए किया जाता है। लाख की उगाही के प्रसंस्करण के दौरान, दो उप-उत्पाद लाख डाई और मोम क्षार में घूल जाते हैं और जलीय बहिःस्राव (निरपंदन) में चले जाते हैं। इन दो उप-उत्पादों को विभिन्न प्रक्रियाओं द्वारा पुनर्प्राप्त किया गया। हालांकि, व्यावसायिक अनुप्रयोगों के लिए इन उप-उत्पादों को शुद्ध रूप में पुनर्प्राप्त करने के लिए उद्योग को कई कठिनाइयों का सामना करना पड़ता है। हमने जलीय प्रवाह से शुद्ध रूप में लाख राल की चयनात्मक वसूली के लिए एक नई प्रक्रिया विकसित की है एवं प्रौद्योगिकी को जायसवाल शेललैक उद्योग, पुरुलिया (पश्चिम बंगाल) में स्थानांतरित कर दिया गया है।

The lac is a natural resin secreted by the tiny lac insects on certain host trees principally found in India, Thailand, China and Indonesia. Due to its non-toxic and biodegradable nature, it is used for various applications in pharmaceuticals, cosmetics and surface coatings industries. During the processing of lac recovery, two by-products lac dye and wax are dissolved in alkali and go into the aqueous effluent (filtrate). These two by-products were recovered by various procedures. However, there were many difficulties faced by the industry to recover these by-products in their pure form to find commercial applications. We have developed a novel process for the selective recovery of lac resin in the pure form from the aqueous effluent and the technology has been transferred to M/s Jaiswal shellac industry, Purulia (WB).

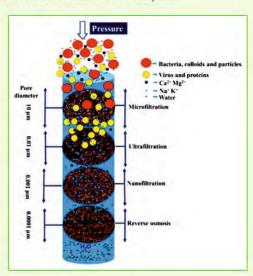
चित्र: जलीय बहिःस्राव से लाख की वसूली के लिए सचित्र आरेख।

Figure: Pictorial diagram for the recovery of lac from the aqueous effluent.

Indian Patent filed Ref. No. 0217NF2020; Dated: 16-Dec-2020

पानी से जहरीले प्रदूषकों एवं अन्य हानिकारक संदूषकों को हटाने के लिए कृत्रिम बहुलक झिल्ली

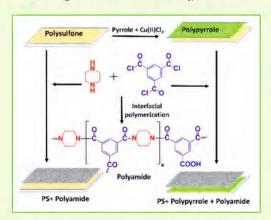
Synthetic polymeric membranes for the removal of toxic pollutants other harmful contaminants from water


जल जीवन का सार है। जल के बिना पृथ्वी पर जीवन असंभव है। हालांकि, पीने के पानी के स्रोत बहुत सीमित हैं

Water is the essence of life. Without water, life is impossible on the earth. However, sources of drinking water are very limited and

और पृथ्वी के मीठे जल का केवल 1% से भी कम हमारे लिए स्लभ है। पानी एक सार्वभौमिक विलायक होने के कारण कई सूक्ष्मजीवों, पृथ्वी की सतह पर उपलब्ध हानिकारक धात् आयनों और कारखानों, खेतों और करबों से उत्पन्न जहरीले पदार्थों से दूषित होने के लिए अत्यधिक उन्मुख है, जिससे गंभीर जल प्रदूषण होता है। तेजी से शहरीकरण और उच्च जनसंख्या वृद्धि दर जल प्रदूषण और कमी के अतिरिक्त कारक हैं। आज तक, प्रदूषित पानी का एक बड़ा हिस्सा अनुपचारित स्थिति में वापस पर्यावरण में छोड़ दिया जाता है, जिससे तालाबों, नदियों, झीलों और समुद्रों में गंभीर प्रदूषण होता है। अपशिष्ट जल से विषाक्त प्रदूषकों को हटाने में विभिन्न झिल्ली-आधारित पृथक्करण प्रक्रियाओं के अनुप्रयोग पर एक विस्तृत कार्य किया गया। इनमें कुछ उल्लेखनीय हैं, औद्योगिक अपशिष्ट जल से बैक्टीरिया, वायरस, भारी धातू आयनों, रंजक, सर्फेक्टेंट और कई अन्य द्षित पदार्थों को हटाने के लिए माइक्रोफिल्ट्रेशन, अल्ट्राफिल्ट्रेशन, नैनोफिल्ट्रेशन और रिवर्स ऑस्मोसिस। इसके अलावा भारी धातु आयनों को हटाने के लिए झिल्ली आसवन; फार्मास्युटिकल यौगिकों को हटाने के लिए झिल्ली बायोरिएक्टर; क्लोरीनयुक्त संदूषकों, फेनोलिक यौगिकों और वाष्पशील कार्बनिक पदार्थों को हटाने के लिए वाष्पीकरण; ट्रेस एंटीबायोटिक दवाओं को हटाने के लिए फॉरवर्ड ऑस्मोसिसः आदि।

चित्र: दबाव चालित झिल्लियों का अस्वीकृति स्पेक्ट्रम। Figure: Rejection spectrum of pressure-driven membranes.


only less than 1% of the earth's freshwater is accessible to us. Water being a universal solvent is highly labile to be contaminated by several microorganisms, harmful metal ions available on earth's crust, and toxic substances produced from factories, farms, and towns causing severe water pollution. Rapid urbanization and high population growth rate are added factors to water pollution and scarcity. Till today, a major part of the polluted water is discarded in the untreated condition back in to the environment causing severe pollution to ponds, rivers, lakes, and seas. A detailed work on the application of different membranebased separation processes in the removal of toxic pollutants from wastewater has been carried-out. A few to mention microfiltration, ultrafiltration, nanofiltration, and reverse osmosis for the removal of bacteria, virus, heavy metal ions, dyes, surfactants, and several other contaminants from industrial wastewater. Also membrane distillation for the removal of heavy metal ions; membrane bioreactor for the removal of pharmaceutical compounds; pervaporation for the removal of chlorinated contaminants, phenolic compounds, and volatile organics; forward osmosis for the removal of trace antibiotics; etc.

झिल्ली के माध्यम से पानी से कीटनाशकों का उपचार Remediation of pesticides from water through Membranes

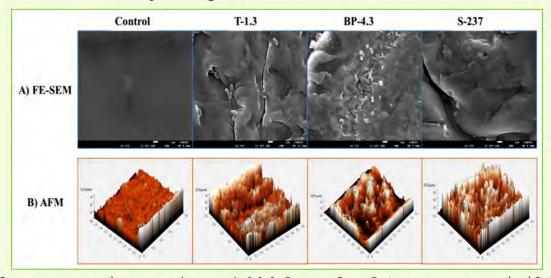
अध्ययन से पता चलता है कि पॉलीपायरोल इंटरलेयर आधारित पॉली (पिपेरिज़िन-एमाइड) झिल्ली बेहतर प्रवाह दिखाती है, हालांकि यह अनमॉडिफाइड की तुलना में नमक पृथक्करण क्षमता का त्याग करती है। पॉलीसल्फोन के साथ पॉलीपायरोल का बंधन छिद्रों का आवरण है, न कि छिद्रभरण तंत्र। इंटरलेयर झिल्ली असंशोधित झिल्ली की तुलना में कीटनाशकों का बेहतर पृथक्करण करता है। पॉलीपायरोल इंटरलेयर आधारित झिल्ली (मेम्ब-॥) बेहतर फ्लक्स दिखाती है, हालांकि यह असंशोधित झिल्ली (मेम्ब-।) की तुलना में नमक पृथक्करण क्षमता का त्याग करती है। मेम्ब-॥, मेम्ब-। की तुलना में कीटनाशकों (डाईयूरॉन और

The study demonstrates that Polypyrrole interlayer based Poly(piperizine-amide) membrane show better flux though it, albeit sacrifices salt separation ability compared to the unmodified one. The polypyrrole attachment with polysulfone is a covering of the pores, not the pore-filling mechanism. The interlayer membrane produces a better separation of pesticides than the unmodified membrane. Polypyrrole interlayer based membrane (Memb-II) shows better flux though it sacrifices salt separation ability compared to the unmodified membrane (Memb-I). The Memb-II shows a better

चित्रः पॉलीपायरोल इंटरलेयर आधारित पतली फिल्म पॉलीएमाइड संमिश्र झिल्ली का निर्माण।

Figure: Preparation of polypyrrole interlayer based thin film polyamide composite membrane.

आइसोप्रोटूरॉन) का बेहतर पृथक्करण को दर्शाता है। मेम्ब-॥ आइसोप्रोटूरॉन (89.52% अस्वीकृति, 54.9 एलएमएच) की पृथक्करण क्षमता प्रदान करता है, जबिक डाययूरॉन के लिए यह 78.82%, 53.46 एलएमएच है। इंटरलेयर पॉलीपायरोल आधारित पतली फिल्म संमिश्र झिल्ली में रोगाणुरोधी गुण प्रदर्शित करता है। पानी के उपचार के लिए उन्नत झिल्ली से युम्मित लाभकारी पृथक्करण और एक जीवाणुरोधी गुण की अपेक्षा की जाती है।

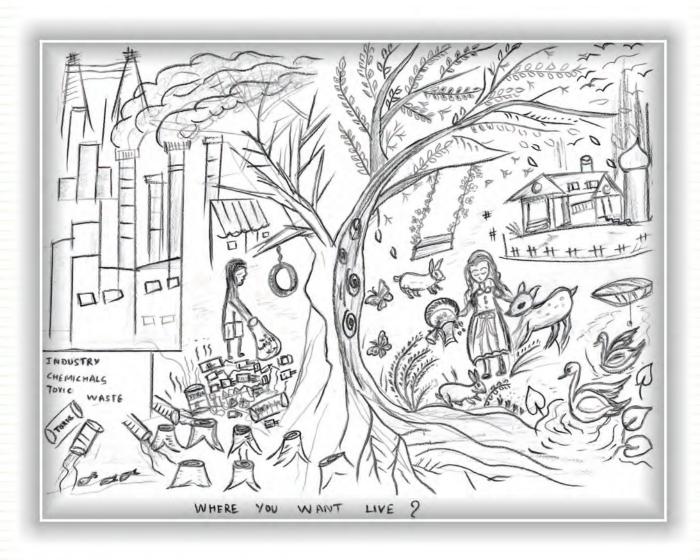

separation of pesticides (diuron and isoproturon) compared to Memb-I. Memb-II provides the separation ability of Isoproturon (89.52% rejection, 54.9 LMH), whereas for diuron, it is 78.82%, 53.46 LMH. The antimicrobial property is seen for interlayer polypyrrole based thin film composite membranes. Advanced membranes for water treatment are expected to couple beneficial separation and an antibacterial properties.

Journal of Applied Polymer Science – 138 (2021) e50356

समुद्री बैक्टीरिया द्वारा प्लास्टिक (पॉलीविनाइल क्लोराइड, पीवीसी) का जैवअपघटन Biodegradation of plastics (polyvinyl chloride, PVC) by marine bacteria

पॉलीविनाइल क्लोराइड (पीवीसी) की उत्पादन मांग में पॉलीइथाइलीन और पॉलीप्रोपाइलीन के बाद तीसरा स्थान है। इसकी पर्यावरण संचय और भस्मीकरण के कारण भविष्य में और बढ़ने की आशंका है, जिससे पर्यावरणीय, स्वास्थ्य और पारिस्थितिक समस्याओं में वृद्धि होगी। समृद्री Polyvinyl chloride (PVC) is the third one after polyethylene and polypropylene in the production demand. It intends to grow further, causing an increase in the risk of health and ecological problems due to environmental accumulation and incineration.

चित्र: (A) FE-SEM और (B) AFM के माध्यम से पीवीसी की स्थलाकृतिक छवियां सतह खुरदरापन, गुहा और चोटियों को दर्शाते हुए (60 दिनों के बैक्टीरिया उपचार के बाद)


Figure: The topographical images of PVC film after 60 days of bacterial treatment showing the surface roughness, cavity and peaks with reference to the control film (without bacterial treatment) through (A) FE-SEM and (B) AFM.

बैक्टीरिया द्वारा पीवीसी के जैवअपघटन क्षमता को निर्धारित किया गया। प्रारंभिक जांच के बाद तीन संभावित समुद्री बैक्टीरिया टी-1.3, बीपी-4.3 और एस-237 (क्रमशः विब्रियो, अल्टरमोनास और कोबेशिया) की पहचान की गई। इन बैक्टीरिया ने पीवीसी की सतह पर सक्रिय बायोफिल्म का निर्माण, जीवक्षमता और प्रोटीन गठन किया। 60 दिनों के बाद, बीपी-4.3 ने पीवीसी का उच्चतम वजन (1.76%) हास प्रदर्शित किया। पीवीसी के पुनर्खनिजीकरण की पृष्टि CO₂ एसिमिलीकरण परख द्वारा की गई। सतह स्थलाकृति में परिवर्तन की पृष्टि फील्ड इमीशन स्कैनिंग इलेक्ट्रॉन

The biodegradative abilities of marine bacteria for PVC were determined. Three potential marine bacterial isolates, T-1.3, BP-4.3 and S-237 (Vibrio, Altermonas and Cobetia, respectively) were identified after preliminary screening. They led to active biofilm formation, viability and protein formation on the PVC surface. The highest weight loss (1.76%) of PVC films was exhibited by BP-4.3 isolate after 60 days of incubation. Remineralization of PVC film was confirmed by a CO₂ assimilation assay. Change in surface topography was confirmed by field emission

माइक्रोस्कोपी (एफईएसईएम) और एटॉमिक फोर्स माइक्रोस्कोपी (एएफएम) द्वारा की गई। 1000-1300 cm⁻¹ क्षेत्र में टर्मिनल क्लोरीन समूह के लिए प्रकार्यात्मक समूह शिखर तीव्रता कम हो गई, जो कि डीक्लोरीकरण का संकेत देता है। थर्मोग्रैविमेट्रिक, तन्य शक्ति एवं संपर्क कोण विश्लेषण ने यांत्रिक गुणों में गिरावट और जैवअपघटन के बाद पीवीसी की हाइड्रोफिलिक प्रकृति में वृद्धि दिखाई। इन परिणामों ने समुद्री बैक्टीरिया द्वारा पीवीसी के जैवअपघटन के लिए आशाजनक प्रमाण प्रदर्शित किए।

scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The functional group peak intensity was decreased for the terminal chlorine group at the region 1000–1300 cm⁻¹, which indicated the dechlorination. Thermogravimetric, tensile strength and contact angle analysis showed a decline in the mechanical properties and a rise in PVC film's hydrophilic nature after biodegradation. These results demonstrated promising evidence of PVC degradation by marine bacteria.

Painting by...

डॉ. मयूरी भट्टाचार्य, डीएसटी महिला वैज्ञानिक Dr. Mayuri Bhattacharya, DST Women Scientist

सामाजिक दायित्व

Social Responsibilities

राष्ट्रीय प्रयोगशाला होने के नाते, संस्थान पर समाज में वैज्ञानिक ज्ञान और स्वभाव को विकसित करने की एक बड़ी जिम्मेदारी है। हम संस्थान में उपलब्ध अत्यधिक विविध वैज्ञानिक विशेषज्ञता का उपयोग करते हए कई कौशल विकास कार्यक्रम आयोजित करते हैं। विषयों में शामिल हैं, लेकिन इन्हीं तक सीमित नहीं हैं; समुद्री शैवाल की खेती, पौधे ऊतक संवर्धन और जीन प्रौद्योगिकियां, मिट्टी और जल परीक्षण, सूक्ष्म शैवाल विविधता और इसकी क्षमता, किण्वन प्रौद्योगिकी, सौर तापीय गैजेट और रासायनिक प्रक्रिया संयंत्र। समाज के निचले तबके में वैज्ञानिक हस्तक्षेप के माध्यम से जीवन की गुणवत्ता में सुधार करना संस्थान द्वारा स्वीकार की गई एक बड़ी चुनौती है। इस दायरे के तहत मूल्य वर्धित उत्पादों की प्राप्ति के लिए सूक्ष्म शैवाल की बड़े पैमाने पर खेती, नमक उत्पादन की गूणवत्ता और मात्रा में सुधार के साथ-साथ नमक-श्रमिकों (अघरियों) के लिए काम करने का माहौल उल्लेखनीय गतिविधियां हैं। हम जलवायु परिवर्तन, बढ़ते ऊर्जा संकट, प्राकृतिक स्रोतों की कमी और इसके परिणामों के मुद्दों को भी संबोधित करते हैं और नीति निर्माताओं को वैकल्पिक समाधान प्रदान करते हैं। संस्थान युवा मन में वैज्ञानिक सोच पैदा करने के लिए स्कूल स्तर पर कई कार्यक्रम चलाता है, जिसमें ओपन-डे और "जिज्ञासा" कार्यक्रम शामिल हैं, हालांकि इस साल महामारी के कारण इन गतिविधियों का आयोजन नहीं किया जा सका। हमने भुगतान के आधार पर अपनी अत्याधुनिक परिष्कृत वैज्ञानिक उपकरण सुविधाएं के द्वार विभिन्न विश्वविद्यालयों, शिक्षाविदों, अनुसंधान एवं विकास संगठनों और उद्योगों का समर्थन करने के लिए खोल रखे हैं। वैज्ञानिक ज्ञान और इस प्रकार राष्ट्र निर्माण को बढ़ावा देने के लिए शैक्षणिक संस्थानों और विश्वविद्यालयों को सेवा शुल्क माफी के रूप में सहायता प्रदान की जाती है। प्राकृतिक आपदाओं के समय संस्थान की सेवा अतुलनीय है। हम दुर्भाग्यपूर्ण और दर्दनाक समय के दौरान सुरक्षित पेयजल की मांग को पूरा करने के लिए अपनी मोबाइल जल शोधन इकाई के साथ ग्राउंड जीरो पर जनता की सेवा कर रहे हैं और इस साल हमारे अपने ही शहर में, कोरोना महामारी के बावजूद, चक्रवाती तुफान ताउते के दौरान भी सेवा प्रदान की गयी। इस संक्षिप्त आत्मिनरीक्षण के साथ, हम 2020-21 के दौरान समाज के लिए अपने कुछ विनम्र योगदानों को गर्व से उजागर कर रहे हैं।

Being a national laboratory, the institute has a great responsibility towards inculcating scientific knowledge and temperament in the society. We conduct a number of skill development programs utilizing highly diversified scientific expertise available in the institute. The topics include but are not limited to; seaweeds cultivation, plant tissue culture and gene technologies, soil & water testing, microalgal diversity and its potentials, fermentation technologies, solar thermal gadgets and chemical process plants. Improving the quality of life through scientific intervention in the lower strata of the society is a major challenge accepted by the institute. Under this ambit large-scale cultivation of micro-algae for extraction of value-added products, improving the quality and quantity of salt production as well as the working environment for salt-workers (agharis) are worth-mentioning activities. We also address the issues of climate change, the growing energy crisis, depletion of natural sources and its consequences, and

provide alternative solutions to policy makers. The institute runs several programs at the school level to inculcate scientific temper in young minds, including open-day and "Jigyasa" programmes, although due to pandemic these activities could not be organized this year. We have opened our state-of-the-art sophisticated scientific instrumentation facilities to support various universities, academia, R&D organizations and industries on a payment basis. Assistance in the form of service fee waiver is provided to educational institutions and universities to promote scientific knowledge and thus nation building. The service of the institute during natural calamities is incomparable. We have been serving the public at ground zero with our mobile water purification unit to meet the demand for safe drinking water during the unfortunate and painful times and this year in our own city, despite the corona pandemic, during cyclonic storm Tauktae also. With this brief introspection, we are proudly highlighting some of our humble contributions to the society during 2020-21.

केंद्रीकृत परिष्कृत उपकरण सुविधा (सीआईएफ) Centralized sophisticated instrument facility (CIF)

सीएसआईआर-सीएसएमसीआरआई के पास एक छत के नीचे अत्यधिक परिष्कृत और आधुनिक वैश्लेषिक उपकरणों की एक विस्तृत श्रृंखला है, यानी केंद्रीकृत उपकरण सुविधा, जो आंतरिक एवं बाह्य उपयोगकर्ताओं के लिए लक्षण वर्णन, परिमाणात्मक विश्लेषण और विधि विकास के उद्देश्य को पुरा करती है। इस विश्लेषणात्मक सुविधा का व्यापक रूप से अनुसंधान विद्वानों (स्नातकोत्तर, डॉक्टरेट छात्रों और पोस्ट-डॉक्टरेट छात्रों) और वैज्ञानिक/ स्टाफ सदस्यों द्वारा बिना किसी शूलक के उपयोग किया जाता है। वैश्लेषिक स्विधा बाहरी उपयोगकर्ताओं जैसे विश्वविद्यालयों, राष्ट्रीय प्रयोगशालाओं, छोटे और मध्यम उद्यमों को भी सीएसआईआर द्वारा अनुमोदित रियायती दर/ दिशानिर्देशों के अनुसार प्रदान की जाती हैं। कई तकनीकों और लक्षण वर्णन मापन की सटीकता के स्तर में सुधार करते हैं और शोधकर्ताओं को विश्व स्तर पर होने वाली घटनाओं के साथ तालमेल बिठाने. उच्च प्रभाव कारक पत्रिकाओं में शोध निष्कर्षों को प्रकाशित करने और बड़े पैमाने पर समाज के उत्थान में योगदान करने में सक्षम बनाता है। प्रशिक्षित और समर्पित वैज्ञानिकों और तकनीशियनों का एक समह उपकरणों के संचालन और रखरखाव में शामिल है और

CSIR-CSMCRI has a broad range of highly sophisticated and modern analytical instruments under one roof, i.e., Centralized Instrument Facility, which serves the purpose of characterization, quantitative analysis, and method development for internal as well as external users. This analytical facility is extensively used by research scholars (postgraduate, doctoral students & Postdoctoral students) and scientist/ members at no charge. The analytical facility is also provided to external users such as Universities, National Laboratories and small and medium enterprises at concessional rates as per the rates/ guidelines approved by CSIR. Multiple techniques and levels characterization improve the accuracy of measurements and enable researchers to keep pace with taking place globally, publish research findings in high-impact factor journals and contribute to the upliftment of society at large. A group of trained and dedicated scientists and technicians are

हमारी सभी इन-हाउस परियोजनाओं के लिए वैश्लेषिक सेवाएं और बौद्धिक इनपुट प्रदान करता है। निम्न तालिका 2020-21 के दौरान सीआईएफ द्वारा किए गए विश्लेषण का संक्षेप प्रस्तुत करती है।

involved in the operation and maintenance of the equipment and provide analytical services and intellectual input for all our in-house projects. The following table summarizes the analysis done by CIF during 2020-21.

अप्रैल 2020 - मार्च 2021 के दौरान विश्लेषित नमूनों का विवरण Details of the samples analysed during April 2020 – March 2021				
विश्लेषण Analysis	उपकरण Instruments	विश्लेषण किए गए नमूनों की संख्या No. of samples analyzed	कुल योग Total	
NMR	FT-NMR (JEOL ECZ600R, 600 MHz)	'H = 2007; '3C = 1181; 31P = 26; 51V = 07; 19F = 40; 2D = 68; DEPT = 36, 15N = 05; APT = 01 External: 'H = 169;	3540	
	FT-NMR (Bruker, 500 MHz)	Liq: 'H = 4384; '3C = 2411 ⁷ Li = 01; 3'P = 90; 5'V = 09; 35Cl = 04; ''B = 16; 2D = 17; '5N = 05;	6937	
	FT-NMR (Bruker, 200 MHz)	¹ H = 78; ¹³ C = 14;	92	
EPR Spectrometer	Magnet-TECS MS-5000		466	
Infrared Spectra	FT-IR spectrometer (Perkin Elmer)		1451	
IR Imaging and ATR	FT-IR, Carry 680 & Microscope Carry 620 (Agilent Technology)	Imaging	00	
		ATR	00	
		Solid/Liquid	00	
Raman Spectrometer	LabRam HR Evolution HORIBA		187	
VDD (single sweets)	Devil on DO Owest	Analysed Solved	114	
XRD (single crystal)	Bruker D8 Quest		94	
XRD (powder)	Philips X'pert MPD System Empyrean		1140	
XRF	Bruker		38	
TEM Analysis	JEOL, Model JEM 2100		451	
FE-SEM analysis	JSM-7100F		1431	
AFM	NT-MDT (Ntegra Aura)		403	
Thermal	NETZSCH, Mettler Toledo	TGA	532	
		DMA DSC	230	
CHNS/O Analysis	Elementar, Vario Micro Cube	1	528	
ICP-OES	Perkin Elmer, Optima 2000	Under maintenance	00	

ICP-MS	ICAP RQ		3778
Ion Chromatography	Thermo Fisher (ICS-5000+ DC-Dionex)		204
Surface area Analysis	ASAP 2010 Surface Analyzer		431
Particle size distribution	Master sizer Particle size Analyser		39
Zeta Sizer Analysis	Malvern		110
LC-MS (Q-TOFF)	LC (Waters), MS (Micromass)		1856
MALDI-TOF/TOF	ABSCIEX, Model:4800plus		449
Luminescence spectra	Horiba Jobin (Fluoro-log) Edinburgh Inst. (μF 920H)		319
UV-VIS-NIR	Varian cary 500		2442
	Shimadzu, UV-3600	***	637
	Advanced Photonics (Portable UV)		00
Isothermal Titration Calorimetry	Microcal iTC 200	<u></u>	29
Circular Dichroism (CD) Polarimeter	Jasco, Model J-815		389
HPLC	Shimadzu,		1293
	Waters		955
GC	Thermo, (Trace GC-Ultra)	Under Maintenance	00
GC-MS	Shimadzu (2010, MS QP2010)		1138
	Agilant (TQ 8040)		2259
тос	Elementar, Model Liquid TOC		175
TCSPC (Time Correlated Single Photon Counting)	Edinburgh Instruments (OB920)	422	04
Rheometer	Anton Paar, Mod.Physica- MCR-301		164
Rancimat	Biodiesel Rancimat Matrohm	Under Maintenance	00

रफूर्त आकांक्षियों को उद्यमिता विकास के लिए समुद्री शैवाल की खेती पर प्रशिक्षण Training on the seaweed farming for entrepreneurship development to dynamic aspirants

तमिलनाडु में तटीय जिले रामनाथपुरम में लोगों के लिए आजीविका प्रदान करने वाली समुद्री शैवाल की खेती सबसे अच्छा व्यवसाय है। इसी तरह की प्रथा को अन्य तटीय जिलों और राज्यों में आगे बढाने के लिए सीएसआईआर-कौशल पहल कार्यक्रम के तहत समुद्री शैवाल की खेती पर प्रशिक्षण दिया गया। इस तरह के दो कार्यक्रम फिजिकल मोड में समुद्री शैवाल शोध स्टेशन, मंडपम कैंप में आयोजित किए गए। प्रत्येक प्रशिक्षण कार्यक्रम में समुद्री शैवाल की मूल बातें, समुद्री शैवाल की खेती का महत्व, बाजार की संभावनाएं और उनके सामाजिक प्रभावों के बारे में विस्तार से बताया गया। कप्पाफी कुसालवारेज़ी, ग्रेसिलेरिया एड्लिस और जी. डेबिलिस जैसे आर्थिक रूप से महत्वपूर्ण समुद्री शैवाल की खेती के तरीकों (बेड़ा और ट्यूबलर नेट विधियों) पर प्रशिक्षण प्रदान किया गया। प्रतिभागियों को प्रशिक्षण कार्यक्रम के दौरान व्यक्तिगत रूप से खेत में खेती करने का मौका दिया गया। प्रशिक्षण प्रतिभागियों ने रामेश्वरम के तटीय हिस्से में समुद्री शैवाल की खेती करने वालों के साथ उपयोगी बातचीत की

और उनकी बुनियादी आजीविका की

Seaweed farming is the best practice providing livelihood for the people along the coastal district of Ramanathapuram in Tamil Nadu. To take forward the similar practice to other coastal districts and states, training was imparted on the seaweed cultivation under the CSIR-Skill initiative program. Two such programs were conducted in physical mode at Marine Algal Research Station, Mandapam camp. In each training program, the basics of seaweeds, the importance of seaweed farming, market perspectives and their societal impacts were explained in detail. Hands on training on cultivation methods (raft and tubular net methods) of economically important seaweeds like Kappaphy cusalvarezii, Gracilaria edulis and G. debilis were provided. Participants were given chance to carry out the farming practices individually in the field during the hands-on training program. The training participants had fruitful interactions with seaweed cultivators in the coastal part of Rameswaram and learned

चित्र: A) समुद्री शैवाल की खेती के प्रदर्शन के दौरान बेड़ा तैयार करने का प्रदर्शन. B) प्रतिभागी औद्योगिक यात्रा के दौरान उत्पादों के प्रदर्शनी का पर्यवेक्षण करते हुए।

Figure: A) Field demonstration of seaweed farming showing raft preparation. **B)** Participants oversee the products display during industrial visit.

स्थिति, समुद्री शैवाल की खेती के बाद जीवन शैली के विकास एवं समुद्री शैवाल की खेती की मौजूदा चुनौतियों के बारे में सीखा। सबसे महत्वपूर्ण बात यह है कि प्रतिभागियों को तीन दिवसीय आयोजन के अंतिम दिन औद्योगिक दौर के लिए एक्वाएग्री प्रोसेसिंग प्राइवेट लिमिटेड, मनामदुरे ले जाया गया। प्रशिक्षुओं को उद्योग में समुद्री शैवाल कप्पाफाइकस अल्वारेज़ी से सैप और कैरेजेनन के चरणवार प्रसंस्करण के बारे में जानकारी मिली। प्रशिक्षुओं से प्राप्त फीडबैक से पता चला कि समुद्री शैवाल पर जानकारियां आसानी से प्राप्त करने के लिए समग्र कार्यक्रम उनके लिए बहुत उपयोगी था। लगभग सत्तर प्रतिभागी जिनमें ज्यादातर विभिन्न विश्वविद्यालयों के अनुसंधान छात्र और कुछ उद्यमियों को 08-03-21 और 17-03-21 के दो बैचों में प्रशिक्षण दिया गया।

about their basic livelihood status, lifestyle development after undertaking seaweed farming and existing challenges of seaweed cultivation. Most importantly, participants were taken to Aquagri Processing Pvt. Ltd., Manamadurai, for an industrial visit on the final day of the three-day event. Trainees got information about the stage-wise processing of sap and carrageenan from seaweed Kappaphycus alvarezii in the industry. Feedback obtained from the trainees revealed that overall program was very much useful to them to acquire the knowledge on seaweed easily. Nearly seventy participants most of them are Research Scholars from various Universities and a few entrepreneurs were undergone the training in two batches on o8-03-21 and 17-03-21.

"सूक्ष्मशैवाल विविधता और उनकी जैव प्रौद्योगिकी क्षमता" पर सीएसआईआर एकीकृत कौशल पहल प्रशिक्षण कार्यक्रम

CSIR integrated skill initiative training program on "microalgal diversity and their biotechnological potentials"

सीएसआईआर-सीएसएमसीआरआई ने 9-12 मार्च 2021 से "सूक्ष्मशैवाल विविधता और उनकी जैव प्रौद्योगिकी क्षमता" पर एक हस्त-प्रशिक्षण कार्यक्रम का आयोजन किया। उक्त प्रशिक्षण कार्यक्रम में भाग लेने के लिए 31 आवेदकों ने पंजीकरण शुल्क का भुगतान किया। प्रयोगशाला स्थान और सूक्ष्मदर्शी समय की अनुपलब्धता के कारण, प्रतिभागियों की संख्या को 25 तक कम कर दिया गया, एवं शेष आवेदकों को निम्नलिखित प्रशिक्षण कार्यक्रम में भाग लेने के लिए कहा गया, जो अगस्त 2021 में आयोजित किया जाएगा। 31 प्रतिभागियों में से 27 प्रतिभागी एमएससी उत्तीर्ण/ एमएससी कर रहे छात्र थे। इस प्रशिक्षण कार्यक्रम में दो पोस्टडॉक शोधार्थियों ने भी भाग लिया। एक प्रतिभागी जीव विज्ञान पृष्ठभूमि से नहीं था, फिर भी वह इस प्रशिक्षण कार्यक्रम में भाग लेने में बहुत रुचि रखता था क्योंकि वह सूक्ष्म शैवाल से उत्पादों का उद्यम शुरू करना चाहता है। अधिकांश प्रतिभागियों ने इस प्रशिक्षण करना चाहता है। अधिकांश प्रतिभागियों ने इस प्रशिक्षण

CSIR-CSMCRI organized a hands-training program on "Microalgal Diversity and their biotechnological potentials" from 9-12 March 2021. There were 31 applicants who paid registration fees for participating in the said training program. Due to the non-availability of laboratory space and microscope timings, the number of participants was reduced to 25 only, and the rest of the applicants were asked to participate in the following training program, which will be organized in August 2021. Out of 31 participants, 27 participants were M.Sc. passed/continuing students. There were two postdoc research scholars also participated in this training program. One participant was not from a biological science background, even though he was very much interested in participating in this training program as he will be venturing in to products from microalgae. Most of the participants

कार्यक्रम का भरपूर आनंद लिया क्योंकि लगभग 20 प्रतिभागियों ने पहली बार सूक्ष्म शैवाल को माइक्रोस्कोप के नीचे देखा था। कुल प्रशिक्षण कार्यक्रम में व्याख्यान और प्रायौगिक कक्षाएं शामिल थीं। प्रतिभागियों ने बड़े पैमाने पर खेती के लिए मीडिया की तैयारी में भी भाग लिया और इनोकुलम को इनोकुलेट करना और बायोमास के आकलन के लिए गणना करना सीखा। कुल मिलाकर, वह प्रशिक्षण कार्यक्रम आनंददायक था, जैसा कि अधिकांश प्रतिभागियों ने टिप्पणी की है, और प्रशिक्षण कार्यक्रम ने उन्हें उद्यमी स्वभाव विकसित करने के लिए प्रेरित किया है।

enjoyed this training program a lot as there were nearly 20 participants who saw the microalgae under the microscope for the first time. The total training program consisted of lectures and practical classes. The participants also took part in media preparation for mass cultivation and learned how to inoculate the required inoculum and the calculation for biomass estimation. Overall, the training program was enjoyable, as remarked by most participants, and the training program has inspired them to develop entrepreneur temperament.

चित्र: A) सीएसआईआर कौशल पहल प्रशिक्षण कार्यक्रम के दौरान गतिविधियां। B) प्रतिभागियों को प्रमाण पत्र के वितरण के बाद सीएसआईआर-सीएसएमसीआरआई में संकाय सदस्यों के साथ समूह फोटो।

Figure: A) Activities during the CSIR Skill Initiative training program. **B)** Group photo along with the Faculty members at CSIR-CSMCRI after distribution of the certificates to the participants.

समुद्री शैवाल की खेती और प्रसंस्करण प्रौद्योगिकी में कौशल विकास कार्यक्रम Skill development program in seaweed cultivation and processing technology

सीएसआईआर-केंद्रीय नमक और समुद्री रसायन अनुसंधान संस्थान, भावनगर जो की भारत में समुद्री शैवाल अनुसंधान और विकासशील खेती प्रौद्योगिकी के क्षेत्र में अग्रणी संस्थान है, ने 24-26 फरवरी 2021 को तीन दिवसीय ऑनलाइन प्रशिक्षण कार्यक्रम का आयोजन किया। प्रशिक्षण कार्यक्रम सीएसआईआर के एकीकृत कौशल पहल के तहत "समुद्री शैवाल की खेती और प्रसंस्करण प्रौद्योगिकी (एसईए-सीपीटी) में कौशल विकास कार्यक्रम" शीर्षक से शुरू किया गया। इस पाठ्यक्रम का मुख्य उद्देश्य बेरोजगार युवाओं के प्रशिक्षण/

CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar which is the pioneering institute in the field of seaweed and developing cultivation technology in India, has organized three days online training program from 24th-26th February 2021. The training program was launched under CSIR Integrated Skill Initiative entitled "Skill Development Program in Seaweed Cultivation and Processing Technology (SEA-CPT)". The major objective of

कौशल विकास के माध्यम से उद्यमिता को बढ़ावा देने के माध्यम से समुद्री शैवाल आधारित उद्योगों की वर्तमान और उभरती जरूरतों के लिए प्रासंगिक उच्च गुणवत्ता वाले कुशल कार्यबल का निर्माण करना था। समुद्री शैवाल से संबंधित नए उद्यमी विकसित करने के लिए समुद्री शैवाल और उनके अनुप्रयोगों पर ज्ञान प्राप्त करने की आकांक्षा के साथ उद्यमिता, व्यवसाय और अकादिमक आदि की श्रेणी से 30 प्रतिभागी थे। प्रतिभागियों का समूह महाराष्ट्र, गोवा, पश्चिम बंगाल, केरल, तमिलनाडु, गुजरात और आंध्र प्रदेश जैसे विभिन्न तटीय राज्यों के साथ-साथ केंद्र शासित प्रदेश अंडमान और निकोबार द्वीप से थे। समुद्री शैवाल के साथ काम करने वाले उद्योगपतियों को भी प्रशिक्षुओं के साथ अपने अनुभव साझा करने के लिए आमंत्रित किया गया था। संस्थान के आंतरिक और साथ ही बाहर के विशेषज्ञों ने अपनी विशेषज्ञता के क्षेत्र के साथ सत्र को विस्तृत किया। प्रशिक्षण कार्यक्रम का समापन 26 फरवरी को समापन समारोह और प्रमाण पत्र वितरण के साथ किया गया।

this course was to create a high-quality skilled workforce relevant to the current and emerging needs of seaweed-based industries through training/ skilling of unemployed youth thus promoting entrepreneurship. There were 30 participants from the category of entrepreneurship, business and academic etc. with an aspiration to acquire knowledge on seaweed and their applications owing to develop new entrepreneurs relating to seaweed. The cluster of the participant was from different coastal states like Maharashtra, Goa, West Bengal, Kerala, Tamil Nadu, Gujarat, and Andhra Pradesh including union territory Andaman and Nicobar Island. Industrialists functioning with seaweed were also invited for sharing their experience with the trainees. Experts from internal as well as from outside of Institute had elaborated the session with their area of expertise. The training program was concluded on 26th February with function certificate valedictory and distribution.

नमक उत्पादन बढ़ाने के लिए रामनाथपुरम के वेलिनोक्कम साल्ट वर्कस् में तकनीकी सेवाएं Technical services at Valinokkam salt works of Ramanathapuram to increase salt production

तमिलनाडु में रामनाथपुरम जिले के वेलिनोक्कम गांव में मैसर्स तमिलनाडु नमक निगम लिमिटेड, तमिलनाडु द्वारा संचालित वेलिनोक्कम साल्ट वर्क्स के उपलब्ध लेकिन अप्रयुक्त संभावित क्षेत्र को नया स्वरूप देकर साल्ट वर्कस् के विस्तार के लिए तकनीकी मार्गदर्शन प्रदान किया गया। इससे उनकी नमक की उपज 2.18 लाख टन से बढ़कर 3-3.5 लाख टन हो गई। सीएसएमसीआरआई की वैज्ञानिक टीम द्वारा ब्राइन की उपलब्धता वाली भूमि के संभावित पैच का मूल्यांकन किया गया। विकास हेतु प्रस्तावित भूमि के समोच्च सर्वेक्षण के दौरान सहायता प्रदान की गई। नमक उत्पादन को बढ़ाने के लिए कंडेनसर, क्रिस्टलाइज़र और प्री-क्रिस्टलाइज़र जैसे प्रत्येक कंपार्टमेंट के सिवल इंजीनियरिंग डिज़ाइन और The technical guidance provided and civil designs prepared for the extension of the salt works by redesigning available but unutilized potential area of Valinokkam Salt Works operated by M/s. Tamil Nadu Salt Corporation Limited, Tamil Nadu in the Valinokkam Village of Ramanathapuram District in Tamil Nadu. This improved their yield of salt from 2.18 lakh tons to 3-3.5 lakh tons. The potential patch of land with brine availability was assessed by Scientist's team of CSMCRI. Assistance was provided during the contour survey of proposed land for development. The civil engineering designs and detailed cross sections of each compartment such as condensers, Crystallizers and pre-crystallizers

विस्तृत क्रॉस सेक्शन को वास्तविक रिसाव दर, वाष्पीकरण दर, मापिकी आंकड़े और ब्राइन और मिट्टी की विशेषताओं के आंकड़े को ध्यान में रखते हुए वैज्ञानिक तरीके से तैयार किया गया। प्रारंभिक ब्राइन घनत्व और रासायनिक संरचना के आधार पर विस्तारित क्षेत्र में उत्पादित होने वाले नमक की गुणवत्ता और उपज का आकलन करने के सुझाव दिए गये। नमक उत्पादन के दौरान जिप्सम प्राप्ति के तरीके भी सुझाए गए। इससे उत्पादन के क्षेत्र में वृद्धि होगी और आसपास के गांव के लोगों के लिए रोजगार पैदा होगा।

were prepared in a scientific way to increase salt production considering percolation evaporation rate. metrological data and brine and soil characteristics data collected from the site. Assessment of the quality and yield of salt likely to be produced in the extended area based on the initial brine density and chemical composition was suggested. Methods for recovery of Gypsum during salt production are also suggested. This will increase the area of production and will generate the employment for the surrounding village people.

चित्र: A) साल्ट-वर्कस् कर्मियों के साथ सीएसआईआर-सीएसएमसीआरआई का दला B) साल्ट वर्कस् पर सीएसआईआर-सीएसएमसीआरआई दला

Figure: A) CSIR-CSMCRI team with salt-work personnel. B) CSIR-CSMCRI team on work.

कौशल विकास कार्यक्रमों के माध्यम से राजस्थान और गुजरात के साल्ट वर्कस् पर नमक की गुणवत्ता में सुधार

Improving the quality of salt at Rajasthan and Gujarat salt-works through skill development programs

स्किल इंडिया पहल के तहत, सीएसआईआर-सीएसएमसीआरआई ने सौर नमक उत्पादन प्रक्रिया और गुणवत्ता नियंत्रण पहलुओं पर प्रशिक्षण कार्यक्रम भी आयोजित किए हैं। इस परियोजना के तहत 2020-21 के दौरान गुजरात और राजस्थान राज्यों के 30 उम्मीदवारों को प्रशिक्षण दिया गया है।

Under the Skill India initiative, CSIR-CSMCRI has also organized the training programs in the area of Solar Salt production process and quality control aspects. Under this project, trainings have been given to the 30 candidates from Gujarat and Rajasthan states during 2020-21.

चित्रः नमक कामगारों के लिए सीएसआईआर-एकीकृत कौशल पहल कार्यक्रम की एक झलक।

Figure: Glimpse from the CSIR-Integrated Skill Initiative program for salt workers.

वैज्ञानिक हरूतक्षेप के माध्यम से सीमांत अगरिया द्वारा उत्पादित नमक की गुणवत्ता और उपज में सुधार

Improving the quality and yield of salt produced by marginal Agaria through scientific intervention

देश में उत्पादित नमक का 60% से अधिक उद्योगों में उपयोग किया जाता है। औद्योगिक ग्रेड नमक की खरीद पूरी तरह से इन उद्योगों द्वारा आवश्यक न्यूनतम स्वीकार्य विनिर्देशों पर आधारित होती है। सीमांत नमक उत्पादकों और श्रमिकों (अगरिया) द्वारा उत्पादित नमक की गुणवत्ता आमतौर पर आवश्यक विनिर्देशों के अनुरूप नहीं होती है। यद्यपि ये अगरिया कठिन परिश्रम करने में सक्षम हैं और खेत की प्रतिकृल परिस्थितियों में भी अच्छा काम करने का जोश

More than 60% of the salt produced in the country is utilized in the industries. The procurement of industrial-grade salt is totally based on the minimum acceptable specifications required by these industries. The quality of salt produced by marginal salt producers and workers (agarias) generally does not meet with required specifications. Though these agarias are capable of hard work and have the zeal to do good work even in the

चित्र: हलवद क्षेत्र, जिला मोरबी, गुजरात के सीमांत अगरिया द्वारा उत्पादित नमक की गुणवत्ता और उपज में वैज्ञानिक हस्तक्षेप के माध्यम से सुधार।

Figure: Improvement in the quality and yield of salt produced by marginal Agaria of Halvad area, District Morbi, Gujarat through scientific intervention.

रखते हैं, लेकिन निम्न गुणवत्ता के कारण नमक बहुत कम कीमत पर बिक पाता है। आम तौर पर प्रत्येक अगरिया परिवार 10 एकड़ के क्षेत्र में काम करता है और सालाना औसतन 1500 - 1800 टन नमक का उत्पादन करता है। इस संबंध में भारत सरकार के विज्ञान और प्रौद्योगिकी मंत्रालय द्वारा संस्थान को एक परियोजना के रूप में सहायता प्रदान की गई है, जिसके तहत गुजरात के हलवाड़ क्षेत्र के नमक निर्माताओं और श्रमिकों (अगरिया) को बहुत अच्छी गुणवत्ता वाला नमक उत्पादन करने के लिए आवश्यक मार्गदर्शन दिया जा रहा है। adverse conditions of the field, but because of low quality, the salt is sold at very low prices. Normally each Agaria family work on an area of 10 acres and produces an average of 1500 - 1800 tonnes of salt annually. The Institute has been assisted by the Ministry of Science and Technology, Government of India in this regard in the form of a project, under which necessary guidance is being given to the Salt Manufacturers and Workers (Agarias) of Halvad region of Gujarat to produce very good quality salt.

राजस्थान के नवॉ-डीडवाना क्षेत्र में नमक की गुणवत्ता में सुधार के लिए सॉल्ट वाशरी-सोडियम सल्फेट प्लांट की स्थापना

Installation of salt washery - sodium sulphate plant to improve quality of salt in Nawa - Didwana region of Rajasthan

डीडवाना में साल्ट वाशिंग प्लांट और सोडियम सल्फेट रिकवरी प्लांट स्थापित किया गया। वैज्ञानिक हस्तक्षेप से स्थानीय सौर नमक उत्पादकों को उप-उत्पाद अर्थात सोडियम सल्फेट द्वारा वर्धित मूल्य की प्राप्ति के साथ-साथ नमक की गुणवत्ता में सुधार करने में मदद मिलेगी। इससे उन्हें राजस्व बढाने में मदद मिलेगी।

Salt washing plant & sodium sulphate recovery plant have been installed at Didwana. Scientific intervention will help the local solar salt producers to improve salt quality along with recovery of value added by-product i.e. sodium sulphate. This will help them increase revenue.

चित्र: राजस्थान के नावाँ - डीडवाना क्षेत्र में नमक की गुणवत्ता में सुधार हेतु साल्ट वाशरी - सोडियम सल्फेट प्लांट की स्थापना

Figure: Installation of Salt Washery - Sodium Sulphate Plant to improve quality of salt in Nawa - Didwana region of Rajasthan.

देवभूमि द्वारका जिले के मोटा असोटा गांव में 1000-1500 एलपीएच क्षमता की विलवणीकरण और शुद्धिकरण इकाई की स्थापना

Installation of desalination and purification unit of 1000-1500 LPH capacity at Mota Asota Village of Devbhoomi Dwarka district

सीएसआईआर-सीएसएमसीआरआई, भावनगर ने जीडब्ल्यूएसएसबी, गुजरात के समन्वय से हाल ही में राष्ट्रीय जल मिशन परियोजना, नई दिल्ली के तहत गुजरात के देवभूमि द्वारका जिले के मोटा असोटा गांव में 1000-1500 एलपीएच क्षमता की नवीन जल विलवणीकरण और शुद्धिकरण इकाई को डिजाइन, विकसित, परीक्षण और स्थापित किया है। परियोजना को सफलतापूर्वक चलाया गया और गुजरात के देवभूमि द्वारका जिले के मोटा असोटा गांव में जीडब्ल्यूएसएसबी और स्थानीय पंचायत अधिकारी को सौंप दिया गया। पीने योग्य पानी फ्लोराइड, नाइट्रेट इत्यादि जैसे दूषित पदार्थों से मुक्त था। स्वदेशी झिल्ली प्रौद्योगिकी का उपयोग करके, डब्ल्यूएचओ के मानकों के अनुसार पीने योग्य पानी ग्रामीणों को उपलब्ध कराए गए। संयंत्र को 23/02/2021 को अंतिम उपयोगकर्ताओं को सौंप दिया गया।

CSIR-CSMCRI, Bhavnagar in coordination with GWSSB, Gujarat has recently designed, developed, tested and installed innovative water desalination and purification unit of 1000-1500 LPH capacity at Mota Asota Village of Devbhoomi Dwarka district of Gujarat under National Water Mission project, New Delhi. The project was successfully run and handed over to GWSSB and local panchayat officials at Mota Asota Village of Devbhoomi Dwarka district of Gujarat. The potable water was free from contaminants like fluoride, nitrate etc. Using the indigenous membrane technology, the potable water as per WHO standards were made available to the villagers. The plant was handed over to the end users on 23/02/2021.

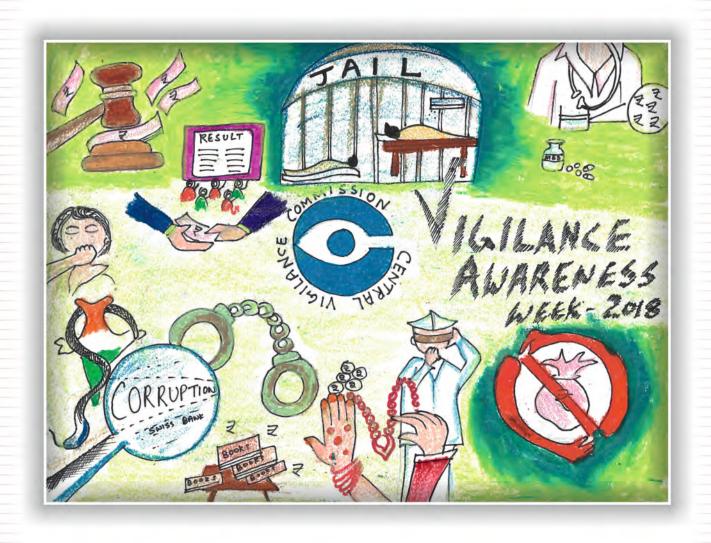
सीवेज उपचार के लिए एक 'विकेंद्रीकृत बहुस्तरीय निर्मित आर्द्रभूमि' प्रणाली की स्थापना Establishing a 'decentralized multistage constructed wetland' system for sewage treatment

सीएसआईआर-सीएसएमसीआरआई परिसर के वैज्ञानिक अपार्टमेंट कॉलोनी में 24 आवासीय अपार्टमेंटों के सीवेज के उपचार के लिए एक 'विकेंद्रीकृत मल्टीस्टेज निर्मित आर्द्रभूमि' (डीएमसीडब्ल्यू) प्रणाली (एसईआरबी, भारत सरकार द्वारा वित्त पोषित) स्थापित की गई। यह प्रणाली प्रतिदिन लगभग 2000 लीटर अपशिष्ट जल का उपचार कर रही है। अंत में, उपचारित जल का उपयोग बागवानी उद्देश्यों के लिए किया जा रहा है। दक्षता और प्रौद्योगिकी को उन्नत करने के लिए अनुसंधान गतिविधियों को अंजाम दिया गया। यह प्रभावी रूप से सीओडी, बीओडी, पोषक तत्वों और पर्यावरण के अनुकूल है। विश्व आर्द्रभूमि दिवस (02.02.2021) के अवसर पर, श्री

'Decentralized multistage wetland' (DMCW) system was established (Funded by SERB, GoI) to treat the sewage of 24 residential apartments at the Scientist apartment colony of the CSIR-CSMCRI campus. The system is treating around 2000 liters of waste water per day. Finally, the treated water is used for gardening purposes. Research activities were carried out to upgrade the efficiency and the technology. It effectively removes the COD, BOD, nutrients, and TSS. It is cost effective and ecofriendly in nature. On World Wetland (02.02.2021), the wetland facility was

वरुण कुमार जे बरनवाल, जिला विकास अधिकारी, भावनगर द्वारा डॉ. कन्नन श्रीनिवासन, निदेशक, सीएसआईआर-सीएसएमसीआरआई की उपस्थिति में आर्द्रभूमि सुविधा का उद्घाटन किया गया।

inaugurated by Shri VarunKumar J. Baranwal, District Development Officer, Bhavnagar in the presence of Dr. Kannan Srinivasan, Director, CSIR-CSMCRI.



[B]

चित्रः सीएसआईआर-सीएसएमसीआरआई परिसर के वैज्ञानिक अपार्टमेंट कॉलोनी में विकेन्द्रीकृत मल्टीस्टेज निर्मित आर्द्रभूमि (डीएमसीडब्ल्यू) प्रणाली के उद्घाटन की तस्वीरें।

Figure: Photographs of the inauguration of decentralized multistage constructed wetland' (DMCW) system at scientist apartment colony of CSIR-CSMCRI campus.

Painting by...

डॉ. सोनम दुबे, सीएसआईआर आरए Dr. Sonam Dubey, CSIR RA

अनुलग्नक

Annexure

1.	शोध पत्र [Research Papers]	
2.	पुस्तक/ पुस्तक में अध्याय [Book/ Chapters in Books]	
3.	स्वीकृत पेटेंट/ दायर पेटेंट [Patents-Granted/ Filed]	
4.	प्रौद्योगिकी हस्तांतरण [Technology Transferred]	172
5.	A. सम्मेलनों में मौखिक/ पोस्टर प्रस्तुति [Oral/ Poster presentation in	176
	Conferences]	
	B. कार्यशाला, व्यापार मेला आदि में प्रदर्शन [Demonstrations in workshop/	
	trade fair]	
6.	आमंत्रित वार्ता [Invited Talks]	183
7.	मानव संसाधन विकास [Human Resource Development	190
	A. स्टाफ सदस्यों द्वारा प्रशिक्षण कार्यक्रमों में भागीदारी।	
	Training Programmes attended by staff members.	
	B. पीएच.डी. [Ph.D.]	
	C. विभिन्न संस्थानों के पाठ्यक्रम के तहत लघु अविध प्रशिक्षण	
	[Short Term Training under Curriculum of various institutes].	
	D. कौशल विकास पहल	
	[Skill Development Initiatives]	
8.	पुरस्कार और मान्यता [Awards and Recognitions]	207
9.	पेशेवर निकायों की सदस्यता [Membership of Professional Bodies]	207
10.	. विदेश में प्रतिनियुक्ति [Deputation Abroad]	
11.	. प्रतिष्ठित आगंतुक और व्याख्यान [Distinguished Visitors & Lectures] 20	
12.	जन-शक्ति सारांश [Manpower Summary]	
13.	नियुक्तियां [Appointments]	212
14.	सेवानिवृत्ति/ स्वैच्छिक सेवानिवृत्ति/ स्थानांतरण/ पदच्युति/ त्यागपत्र	212
	[Superannuation/ Voluntary retirement/ Transfer/ Dismissal/	
	Resignation]	
15.	स्मृति-शेष [Always in Memories]	213
16.	अंतर-संस्था संबंध [Interagency Linkages]	214

17.	बजट सारांश [Budget Summary]	222
18.	अनुसंधान परिषद [Research Council]	223
19.	प्रबंधन परिषद [Management Council]	224
20.	वैधानिक समितियाँ [Statutory Committees]	224
	A. एससी / एसटी के लिए शिकायत निवारण समिति	
	[Grievance Redressal Committee for SCs/STs]	
	B. स्थानीय शिकायत समिति [Local Grievance Committee]	
	C. आंतरिक शिकायत समिति [Internal Complaints Committee]	
	D. राजभाषा कार्यान्वयन समिति	
	[Official Language Implementation Committee]	
21.	आरक्षण नीति कार्यान्वयन [Reservation policy implementation]	227
22.	आरटीआई अनुपालन [RTI Compliance]	228
23.	ज्ञान संसाधन [Knowledge Resources]	228
24.	राजभाषा प्रसार [Official Language Dissemination]	230
25.	सम्मेलन/ कार्यशालाएं/ कार्यक्रम/ बैठकों का आयोजन	234
	[Seminars/ Workshops/ Events/ Meetings Organized]	

1. शोध पत्र [Research Papers]

- 1. Patel, H.; Mangukiya, H.; Maiti, P.; Maiti, S.; Empty cotton boll crop-residue and plastic waste valorization to bio-oil, potassic fertilizer and activated carbon A bio-refinery model. Journal of Cleaner Production. 2021, 290, 125738. [IF 7.246]
- 2. Mondal, P.; Satra, J.; Srivastava, D. N.; Bhadu, G. R.; Adhikary, B.; Pdδ+-Mediated surface engineering of AgMnO₄ nanorods as advanced bifunctional electrocatalysts for highly efficient water electrolysis. ACS Catalysis. 2021, 11, 3687–3703. [IF 12.35]
- 3. Kavale, M. G.; Alexander, H. J.; Malarvizhi, J.; Manivannan, M.; Ram, S.; Preliminary observations on the propagule production of sargassum polycystum *C. Agardh* from stoloniferous branches. Aquaculture. 2021, **534**, 736322. [IF 3.224]
- Yadav, V.; Rathod, N. H.; Sharma, J.; Kulshrestha, V.; Long side-chain type partially cross-linked poly (vinylidene fluoride-co-hexafluoropropylene) anion exchange membranes for desalination via electrodialysis. Journal of Membrane Science. 2021, 622, 119034. [IF 7.183]
- 5. Balasubrahmanyam, S. N.; Ganguly, B.; Lo, R.; Rajan, M. M. B.; Sreerag, M. N.; Sharafudeen, P. C.; Oshiya, R. A.; Rajendran, N.; Computational evidence for back donation in an N → O group based on modes of transmission of substituent effects in 3-(4 '-substituted) phenylfuroxans. Journal of Chemical Sciences. 2021, 133, 31 (1-7). [IF 1.406]
- Ranawat, B.; Mishra, S.; Singh, A.; Enterobacter hormaechei (MF957335) enhanced yield, disease and salinity tolerance in tomato. Archives of Microbiology. 2021, 203, 2659-2667. [IF 1.884]
- 7. Kholiya, F.; Singh, A.; Gosai, A.; Meena, R.; Facile preparation of agaraldehyde chitosan-based composite beads as effectual adsorbent especially towards amido black. Journal of Applied Polymer Science. 2021, 138, 50716. [IF 2.52]
- **8.** Parmar, B.; Bisht, K. K.; Rajput, G.; Suresh, E.; Recent advances in metal-organic frameworks as adsorbent materials for hazardous dye molecules. Dalton Transactions. 2021, **50**, 3083. [IF 4.174]
- 9. Sahu, P.; A comprehensive review of saline effluent disposal and treatment: conventional practices, emerging technologies, and future potential. Journal of Water Reuse and Desalination. 2021, 11, 33-65. [IF 3.154]
- Polisetti, V.; Naidu, S.; Kansara, A. M.; Ray, P.; Singh, P. S.; An instant oil separation by octadecyl-polysiloxane-reticulated recyclable superhydrophobic polyester fabric. Environmental Technology & Innovation. 2021, 21, 101322. [IF 3.356]

- 11. Kumar, A.; Kumar, S.; Mukhopadhyay, N. K.; Yadav, A.; Kumar, V.; Winczek, J.; Effect of variation of SiC reinforcement on wear behaviour of AZ91 alloy composites. Materials 2021, 14, 990. [IF 3.057]
- 12. Sreenath, S.; Suman, R.; Sayana, K. V.; Nayanthara, P. S.; Borle, N. G.; Verma, V.; Nagarale, R. K.; Low-voltage nongassing electroosmotic pump and infusion device with polyoxometalate-encapsulated carbon. Langmuir. 2021, 37, 1563-1570. [IF3.557]
- 13. Sreedharan, S.; Tiwari, R.; Tyde, D.; Aderinto, S. O.; Pramanik, S. K.; Das, A.; Thomas, J. A.; Nanocarriers used as probes for super-resolution microscopy. Materials Chemistry Frontiers. 2021, 5, 1268. [IF 6.788]
- Mehta, M. J.; Kulshrestha, A.; Sharma, S.; Kumar, A.; Room temperature depolymerization of lignin using a protic and metal based ionic liquid system: an efficient method of catalytic conversion and value addition. Green Chemistry. 2021, 23, 1240. [IF 9.48]
- 15. Johnson, J.; Saha, E.; Chhetri, A.; Suresh, E.; Mitra, J.; Self-assembled melaminium adipate lamellae for adsorptive removal of anionic dyes from wastewater. ACS Applied Polymer Materials. 2021, 3, 651-660. [IF 8.097]
- Manna, M.; Murarka, R.K.; Polyunsaturated fatty acid modulates membrane-bound monomeric alpha-synuclein by modulating membrane microenvironment through preferential interactions. ACS Chemical Neuroscience. 2021, 12, 675-688. [IF 4.486]
- 17. Tiwari, R.; Banerjee, S.; Tyde, D.; Das Saha, K.; Ethiarajan, A.; Mukherjee, N.; Chattopadhy, S.; Pramanik, S. K.; Das, A.; Redox-responsive nanocapsules for the spatiotemporal release of miltefosine in lysosome: Protection against leishmania. Bioconjugate Chemistry. 2021, 32, 245-253. [IF 4.031]
- 18. Basavaraja, D.; Krishna, M. S. A.; Krishnan, J.; Athira, C. S.; Amrutha, R. R.; Suresh, E.; Somappa, S. B.; Base-enabled access to diastereoselective spirofuran oxindoles and gamma-functionalized allenoates. Chemical Communications. 2021, 57, 1746. [IF 5.996]
- 19. Shahi, A.; Dwivedi, C.; Manjare, S. D.; Kulshrestha, V.; Sulphonated (PVDF-co-HFP)-graphene oxide composite polymer electrolyte membrane for HI decomposition by electrolysis in thermochemical iodine-sulphur cycle for hydrogen production. International Journal of Hydrogen Energy. 2021, 46, 8852-8863. [IF 4.939]
- 20. Singh, H.; Sen, C.; Suresh, E.; Panda, A. B.; Ghosh, S. C.; C-H amidation and amination of arenes and heteroarenes with amide and amine using Cu-MnO as a reusable catalyst under Mild conditions. Journal of Organic Chemistry. 2021, 86, 3261-3275. [IF 4.335]
- 21. Tiwari, R.; Shinde, P. S.; Sreedharan, S.; Dey, A. K.; Vallis, K. A.; Mhaske, S. B.; Pramanik, S. K.; Das, A.; Hotoactivatable prodrug for simultaneous release of mertansine and CO along with a BODIPY derivative as a luminescent marker in

- mitochondria: a proof of concept for NIR image-guided cancer therapy. Chemical Science. 2021, **12**, 2667. [IF 9.346]
- 22. Muthusamy, S.; Malarvizhi, M.; Suresh, E.; Catalyst-free synthesis of 3, 1-benzoxathiin-4-ones/1, 3-benzodioxin-4-ones. Organic & Biomolecular Chemistry. 2021, 19, 1508. [IF 3.412]
- 23. Ranawat, B.; Bachani, P.; Singh, A.; Mishra, S.; Enterobacter hormaechei as plant growth-promoting bacteria for improvement in lycopersicum esculentum. Current Microbiology. 2021, 78, 1208-1271. [IF 1.746]
- 24. Sati, H.; Chokshi, K.; Soundarya, R.; Ghosh, A.; Mishra, S.; Seaweed-based biostimulant improves photosynthesis and effectively enhances growth and biofuel potential of a green microalga *Chlorella variabilis*. Aquaculture International. 2021, 29, 963-975. [IF 1.363]
- Kholiya, F.; Jauhari, S.; Meena, R.; Seaweed-derived polymer-based blue-emitting C-dots: synthesis, characterization and evaluation for iron sensing. Polymer International. 2021, 70, 1309-1315. [IF 2.574]
- 26. Vyas, G.; Bhatt, S.; Paul, P.; Functionalized magnetic nanoparticles Fe₃O₄@SiO₂@PTA (PTA = (2-pyrimidylthio) acetic acid) for efficient removal of mercury from water. Colloids and Surfaces A-Physicochemical and Engineering Aspects. 2021, 611, 125861. [IF 3.99]
- 27. Maalige, N. R.; Aruchamy, K.; Polishetti, V.; Halakarni, M.; Mahto, A.; Mondal, D; Kotrappanavar, N. S.; Restructuring thin film composite membrane interfaces using biopolymer as a sustainable alternative to prevent organic fouling. Carbohydrate Polymers. 2021, 254, 117297. [IF 7.182]
- 28. Sequeira, R. A.; Sharma, M.; Pereira, M. M.; Singh, N.; Bhattacharya, S.; Chudasama, N. A.; Prasad, K.; One step selective partition of epsilon-polylysine present in broth cultures in ionic liquid-based aqueous biphasic systems. Separation Science and Technology. 2021, 56, 631-639. [IF 5.774]
- 29. Sharma, S.; Choudhary, B.; Yadav, S.; Mishra, A.; Mishra, V. K.; Chand, R.; Chen, C.; Pandey, S. P.; Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against aspergillus flavus infection. Journal of Hazardous Materials. 2021, 404, 124155. [IF 9.038]
- **30.** Panda, A.; Rangani, J.; Parida, A. K.; Physiological and metabolic adjustments in the xero-halophyte haloxylon salicornicum conferring drought tolerance. Physiologia Plantarum. 2021, **172**, 1189-1211. [IF 4.148]
- 31. Siddiqui, S. A.; Khatri, K.; Patel, D.; Rathore, M. S.; Photosynthetic gas exchange and chlorophyll a fluorescence in Salicornia brachiata (Roxb.) under osmotic stress. Journal of Plant Growth Regulation. 2021, 41, 429-444. [IF 2.672]

- 32. Singh, P.; Pandey, K. B.; Rizvi, S. I.; Piperine protects oxidative modifications in human erythrocytes. Journal of Basic and Clinical Physiology and Pharmacology. 2021, 33, 163-167.
- 33. Khandare, S. D.; Chaudhary, D. R.; Bhavanath, J.; Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic. Biodegradation. 2021, 32, 127-143. [IF 2.805]
- 34. Ravi, K.; Naikwadi, D. R.; Bankar, B. D.; Biradar, A. V.; Sustainable isomerization of alpha-pinene oxide to trans-carveol using formic acid/aniline system at room temperature. Advanced Sustainable Systems. 2021, 5, 2000212. [IF 4.869]
- 35. Mulik, B. B.; Bankar, B. D; Munde, A. V.; Chavan, P. P.; Biradar, A. V.; Sathe, B. R.; Electrocatalytic and catalytic CO₂ hydrogenation on ZnO/g-C₃N₄ hybrid nanoelectrodes. Applied Surface Science. 2021, 538, 148120. [IF 6.182]
- **36.** Das, A. K.; Sequeira, R. A.; Maity, T. K.; Prasad, K.; Bio-ionic liquid promoted selective coagulation of kappa-carrageenan from *Kappaphycus alvarezii* extract. Food Hydrocolloids. 2021, **111**, 106382. [IF 7.053]
- 37. Mahto, A.; Aruchamy, K.; Meena, R.; Kamali, M.; Nataraj, S. K.; Aminabhavi, T. M.; Forward osmosis for industrial effluents treatment-sustainability considerations. Separation and Purification Technology. 2021, 254, 117568. [IF 5.774]
- **38.** Joshi, P. S.; Agarwal, P.; Agarwal, P. K.; Overexpression of AlNAC1 from recretohalophyte aeluropus lagopoides alleviates drought stress in transgenic tobacco. Environmental and Experimental Botany. 2021, **181**, 104277. [IF 4.027]
- **39.** Patel, N. P.; Shimpi, G. G.; Haldar, S.; A comparative account of resistance and antagonistic activity of healthy and bleached coral-associated bacteria as an indicator of coral health status. Ecological Indicators. 2021, **120**, 106886. [IF 4.229]
- **40.** Sahoo, J.; Jaiswar, S.; Chatterjee, P. B.; Subramanian, P. S.; Jena, H. S.; Mechanistic insight of sensing hydrogen phosphate in aqueous medium by using lanthanide (III)-based luminescent probes. Nanomaterials. 2021, **11**, 53. [IF 4.324]
- 41. Patel, U.; Parmar, B.; Patel, P.; Dadhania, A.; Suresh, E.; The synthesis and characterization of Zn(II)/Cd(II) based MOFs by a mixed ligand strategy: a Zn(II) MOF as a dual functional material for reversible dye adsorption and as a heterogeneous catalyst for the Biginelli reaction. Materials Chemistry Frontiers. 2021, 5, 304. [IF 6.788]
- **42.** Oyeku, O. G.; Mandal, S. K.; Historical occurrences of marine microalgal blooms in Indian peninsula: Probable causes and implications. Oceanologia. 2021, **63**, 51-70. [IF 2.198]
- 43. Patel, R. V.; Bharti, K.; Singh, G.; Mittal, G.; Singh, D. B.; Yadav, A.; Comparative investigation of double slope solar still by incorporating different types of collectors: A mini review. Materials Today-Proceedings. 2021, 38, 300-304. [IF 0.97]

- **44.** Kavaiya, A. R.; Raval, H. D.; Highly selective and antifouling reverse osmosis membrane by crosslinkers induced surface modification. Environmental Technology. 2021, [Ahead of print] [DoI: 10.1080/09593330.2020.1869316. [IF 2.213]
- 45. More, P.; Agarwal, P.; Anand, A.; Sanan-Mishra, N.; Agarwal, P. K.; Artificial miRNA mediated resistance in tobacco against Jatropha leaf curl Gujarat virus by targeting RNA silencing suppressors. Scientific Reports. 2021, 11, 890. [IF 3.998]
- 46. Rajput, A.; Raj, S. K.; Lebedeva, O. V.; Chesnokova, A. N.; Raskulova, T. V.; Kulshrestha, V.; Functionalized carbon dots composite cation exchange membranes: Improved electrochemical performance and salt removal efficiency. Colloids and Surfaces A-Physicochemical and Engineering Aspects. 2021, 609, 125677. [IF 3.99]
- **47.** Sanghavi, R. J.; Dobariya, R.; Bhatti, S.; Kumar, A.; Preparation of high-purity magnesium-ammonium-phosphate fertilizer using sea bittern and industrial waste streams. Environmental Science and Pollution Research. 2021, **27**, 7720-7728. [IF 3.056]
- **48.** Patel, J.; Mishra, A.; Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis. Physiologia Plantarum. 2021, **172**, 1030-1044. [IF 4.148]
- 49. Bhatt, J.; Sequeira, R. A.; Vohra, A.; Devkar, R. V.; Maity, T. K.; Prasad, K.; Ionic liquid-mediated preparation of noncytotoxic hemocompatible stable DNA-epsilon-poly-L-lysine polyplexes: A new sustainable approach for the bulk production of potential nonviral vectors for gene delivery applications. ACS Sustainable Chemistry & Engineering. 2021, 9, 264-272. [IF 7.632]
- 50. Seal, N.; Singh, M.; Das, S.; Goswami, R.; Pathak, B.; Neogi, S.; Dual-functionalization actuated trimodal attribute in an ultra-robust MOF: Exceptionally selective capture and effectual fixation of CO₂ with fast-responsive, nanomolar detection of assorted organo-contaminants in water. Materials Chemistry Frontiers. 2021, 5, 979-994. [IF 6.788]
- 51. Seal, N.; Goswami, R.; Singh, M.; Pillai, R. S.; Neogi, S.; An ultralight charged MOF as fluoro-switchable monitor for assorted organo-toxins: size-exclusive dye scrubbing and anticounterfeiting applications via Tb³⁺ sensitization. Inorganic Chemistry Frontiers. 2021, **8**, 296-310. [IF 6.569]
- 52. Kumar, R.; Joshi, A.; Rawat, D.; Adimurthy, S.; Synthesis of thiazolidinimines/ thiazinan-2-imines via three-component coupling of amines, vic-dihalides and isothiocyanates under metal-free conditions. Synthetic Communications. 2021, 51, 1340-1352. [IF 1.796]
- 53. Kavale, M. G.; Kazi, M. A.; Brodie, J.; Phycocalidia species (Bangiales, Rhodophyta), from the warm West Coast of India. European Journal of Phycology. 2021, 56, 337-347. [IF 2.756]

- 54. Biswal, H. J.; Yadav, A.; Vundavilli, P. R.; Gupta, A.; High aspect ZnO nanorod growth over electrodeposited tubes for photocatalytic degradation of EtBr dye. RSC Advances. 2021, 11, 1623-1634. [IF 3.119]
- Mantri, V. A.; Shah, Y.; Balar, N.; Chavda, K.; Mavani, M.; Kolhe, M.; Sambhwani, K.; Meena, R.; Prasad, K.; Kavale, M. G.; Thakur, R. S.; Limited-scale field trial confirmed differences in growth and agarose characteristics in life-cycle stages of industrially important marine red alga Gracilaria dura (Gracilariales, Rhodophyta). Journal of Applied Phycology. 2021, 33, 1059–1070. [IF 3.016]
- **56.** Maru, M. S.; Patel, P.; Khan, N. H.; Shukla, R. H.; Cu- hydrotalcite (Cu-HT) as an efficient catalyst for the hydrogenation of CO₂ to formic acid. Current Catalysis 2021 09, 59-71.
- 57. Ansari, M. B.; Shukla, R. S.; Mo, Y-H; Park, S-E.; Carbamate intermediates over mesoporous carbon nitrides in CO₂ mediated oxidation reaction. Chem. Engg, J. Advances, 2021, **06**, 100102 (1-8).
- 58. Patel, M.; Parida, A. K.; Salinity alleviates the arsenic toxicity in the facultative halophyte Salvadora persica L. by the modulations of physiological, biochemical, and ROS scavenging attributes. Journal of Hazardous Materials. 2021, 401, 123368. [IF 9.038].
- Yadav, S.; Elansary, H. O.; Mattar, M. A.; Khalid M. E.; Majed A. A.; Mishra, A.; Differential accumulation of metabolites in suaeda species provides new insights into abiotic stress tolerance in C-4-halophytic species in elevated CO₂ conditions. Agronomy-Basel. 2021, 11, 131. [IF 2.603]
- 60. Wakchaure, P. D.; Ganguly, B.; Tuning the electronic effects in designing ligands for the inhibition of rotamase activity of FK506 binding protein. Theoretical Chemistry Accounts. 2021, 140, 1-10. [IF 1.498]
- 61. Polisetti, V.; Ray, P.; Nano SiO₂ and TiO₂ embedded polyacrylonitrile/polyvinylidene fluoride ultrafiltration membranes: Improvement in flux and antifouling properties. Journal of Applied Polymer Science. 2021, 138, 49606. [IF 2.52]
- 62. Panda, A.; Rangani, J.; Parida, A. K.; Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. Plant Physiology and Biochemistry. 2021, 158, 284–296. [IF 3.72]
- **63.** Kumari, A.; Bano, N.; Chaudhary, D. R.; Jha, B.; Draft genome sequence of plastic degradingBacillussp. AIIW2 isolated from the Arabian ocean. Journal of Basic Microbiology. 2021, **61**, 37–44. [IF 1.909]
- **64.** Muthusamy, S.; Malarvizhi, M.; Suresh, E.; BF₃.OEt₂ Catalyzed Synthesis of 1, 3-Thiazines/-Selenazines. Asian Journal of Organic Chemistry. 2021, **10**, 170–175. [IF 3.13]

- 65. Dey, A.; Ramlal, V. R.; Sankar, S. S.; Mahapatra, T. S.; Suresh, E.; Kundu, S.; Mandal, A. K.; Das, A.; Crystalline free-standing two-dimensional zwitterionic organic nanosheets for efficient conduction of lithium ions. ACS Applied Materials & Interfaces. 2020, 12, 58122–58131. [IF 8.758]
- 66. Ghosh, S.; Jana, K.; Wakchaure, P. D.; Ganguly, B.; Revealing the cholinergic inhibition mechanism of Alzheimer's by galantamine: a metadynamics simulation study. Journal of Biomolecular Structure & Dynamics. 2020, 1–12. [Ahead of print] [DoI: 10.1080/07391102.2020.1867644] [IF 2.634]
- 67. Ghosh, D.; Kumar, G. R.; Subramanian, S.; Tanaka, K.; More than just a reagent: The rise of renewable organohydrides for catalytic reduction of carbon dioxide. ChemSusChem. 2020, 14, 824–841. [IF 7.962]
- Semwal, R.; Joshi, A.; Kumar, R.; Adimurthy, S.; Annulation of imidazo [1,2-a] pyridines under metal-free conditions. New Journal of Chemistry. 2020, 44, 20530–20534. [IF 3.288]
- 69. Panda, A.; Rangani, J.; Parida, A. K.; Comprehensive proteomic analysis revealing multifaceted regulatory network of the xero-halophyte haloxylon salicornicum involved in salt tolerance. Journal of Biotechnology. 2020, 324, 143–161. [IF 2.894]
- **70.** Sreenath, S.; Sharma, N. K.; Nagarale, R. K.; Alkaline all iron redox flow battery with a polyethylene/ poly(styrene-co-divinylbenzene) interpolymer cation-exchange membrane. RSC Advances. 2020, 10, 44824–44833. [IF 3.119]
- 71. Sharma, P. P.; Yadav, V.; Rajput, A.; Gupta, H.; Saravaia, H.; Kulshrestha, V.; Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis. Desalination. 2020, 496, 114755. [IF 7.098]
- 72. Dey, A.; Ghorai, N.; Das, A.; Ghosh, H. N.; Proton-coupled electron transfer for photoinduced generation of two-electron reduced species of quinone. Journal of Physical Chemistry B. 2020, 124, 11165–11174. [IF 2.857]
- 73. Sabavath, G.; Rahman, M.; Sarmah, T.; Dihingia, P.; Srivastava, D. N.; Sharma, S.; Pandey L. M.; Kakati, M.; Single-step, DC thermal plasma assisted synthesis of Ag-C nanocomposites with less than ten nano-meter sizes for antibacterial applications. Journal of Physics D: Applied Physics. 2020, 53, 365201 (1-10).
- 74. Mehta, R.; Brahmbhatt, H.; Bhojani, G.; Bhattacharya, A.; Polypyrrole as the interlayer for thin-film poly (piperazine-amide) composite membranes: Separation behavior of salts and pesticides. Journal of Applied Polymer Science. 2020, 138, 50356. [IF 2.52]
- 75. Dutta, A.; Trivedi, P.; Kulshrestha, A.; Kumar, A.; Chaturvedi, V.; Sarma, D.; Sustainable parts-per-million level catalysis with Fe-III: One-pot cascade synthesis of

- 2,3-dihydroquinazolin-4(1H)-ones in water. Applied Organometallic Chemistry. 2020, **35**, 6116-1. [IF 3.14]
- Wakchaure, P. D.; Ganguly, B.; Computational study on metal-ion-decorated prismane molecules for selective adsorption of CO₂ from flue gas mixtures. ACS Omega. 2020, 5, 31146–31155. [IF 2.87]
- Sen, C.; Sarvaiya, B.; Sarkar, S.; Ghosh, S. C.; Room-temperature synthesis of isoindolone spirosuccinimides: Merger of visible-light photocatalysis and cobaltcatalyzed C-H activation. Journal of Organic Chemistry. 2020, 85, 15287–15304. [IF 4.335]
- 78. Jha, R. K.; Patel, J.; Patel, M. K.; Mishra, A.; Jha, B.; Introgression of a novel cold and drought regulatory-protein encoding CORA-like gene, SbCDR, induced osmotic tolerance in transgenic tobacco. Physiologia Plantarum. 2020, 172, 1170–1188. [IF 4.148]
- 79. Kumar, Y.; Singhal, S.; Tarafdar, A.; Pharande, A.; Ganesan, M.; Badgujar, P. C.; Ultrasound assisted extraction of selected edible macroalgae: Effect on antioxidant activity and quantitative assessment of polyphenols by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Algal Research-Biomass Biofuels and Bioproducts. 2020, 52, 102114. [IF 4.008]
- 80. Nutan, B.; Kumar, A.; Jewrajka, S. K.; Library of derivatizable multiblock copolymers by nucleophilic substitution polymerization and targeting specific properties. Biomacromolecules. 2020, 21, 5029–5043. [IF 6.092]
- **81.** Kholiya, F.; Rathod, M. R.; Meena, R.; In situ synthesis of gold nanoparticle coated composite derived from agar-aldehyde: characterization and their catalytic activity. Materials Today Communications. 2020, **25**, 101543. [IF2.678]
- 82. Lee, J. S.; Warkad, S. D.; Shinde, P. B.; Kuwar, A.; Nimse, S. B.; A highly selective fluorescent probe for nanomolar detection of ferric ions in the living cells and aqueous media. Arabian Journal of Chemistry. 2020, 13, 8697–8707. [IF4.762]
- 83. Prasad, L.; Kumar, S.; Patel, R. V.; Yadav, A.; Kumar, V.; Winczek, J.; Physical and mechanical behaviour of sugarcane bagasse fibre-reinforced epoxy bio-composites. Materials. 2020, 13, 5387. [IF 3.057]
- 84. Mukherjee, A.; Mehta, R.; Saha, S.; Bhattacharya, A.; Biswas, P. K.; Kole, R. K.; Removal of multiple pesticide residues from water by low-pressure thin-film composite membrane. Applied Water Science. 2020, 10, 244. [IF 3.8]
- 85. Mantri, V. A.; Ganesan, M.; Kavale, M. G.; Gajaria, T. K.; Status, exploitation and resource management of alginophytes in India: an account and way forward. Journal of Applied Phycology. 2020, 32, 4423–4441. [IF 3.016]
- **86.** Vignesh, M.; Kazi, M. A.; Rathore, M. S.; Kavale, M. G.; Dineshkumar, R.; Mantri, V. A.; Artificial neural network modelling for seedling regeneration in Gracilaria dura

- (Rhodophyta) under different physiochemical conditions. Plant Cell Tissue and Organ Culture. 2020, **143**, 583–591. [IF 2.196]
- 87. Bhatt, S.; Vyas, G.; Paul, P.; A new molecular probe for colorimetric and fluorometric detection and removal of Hg²⁺ and its application as agarose film-based sensor for onsite monitoring. Journal of Fluorescence. 2020, 30, 1531–1542. [IF 2.196]
- 88. Khedia, J.; Dangariya, M.; Nakum, A. K.; Agarwal, P.; Panda, A.; Parida, A. K.; Gangapur, D. R.; Meena, R.; Agarwal, P. K.; Sargassum seaweed extract enhances macrophomina phaseolinaresistance in tomato by regulating phytohormones and antioxidative activity. Journal of Applied Phycology. 2020, 32, 4373–4384. [IF 3.016]
- 89. Prasad, L.; Kumain, A.; Patel, R. V.; Yadav, A.; Winczek, J.; Physical and mechanical behavior of hemp and nettle fiber-reinforced polyester resin-based hybrid composites. Journal of Natural Fibers. 2020, 1–16 [DoI: 10.1080/15440478.2020.1821284]. [IF 2.622]
- 90. Dawange, P.; Jaiswar, S.; Effects of ascophyllummarine plant extract powder (AMPEP) on tissue growth, proximate, phenolic contents, and free radical scavenging activities in endemic red seaweed Gracilaria corticata var. cylindricafrom India. Journal of Applied Phycology. 2020, 32, 4127–4135. [IF 3.016]
- Chokshi, K.; Pancha, I.; Trivedi, K.; Maurya, R.; Ghosh, A.; Mishra, S.; Physiological responses of the green microalga Acutodesmus dimorphusto temperature induced oxidative stress conditions. Physiologia Plantarum. 2020, 170, 462–473. [IF 4.148]
- 92. Gundekari, S.; Desai, H.; Ravi, K.; Mitra, J.; Srinivasan, K.; In situ generated Ru (0)-HRO@Na-beta from hydrous ruthenium oxide (HRO)/ Na-beta: An energy-efficient catalyst for selective hydrogenation of sugars. Frontiers in Chemistry. 2020, 08, 525277. [IF 3.693]
- 93. Wakchaure, P. D.; Ghosh, S.; Ganguly, B.; Revealing the inhibition mechanism of RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 by remdesivir and nucleotide analogues: A molecular dynamics simulation study. Journal of Physical Chemistry B. 2020, 124, 10641–10652. [IF 2.857]
- 94. Ravi, K.; Advani, J. H.; Bankar, B. D.; Singh, A. S.; Biradar, A. V.; Sustainable route for the synthesis of flower-like Ni@N-doped carbon nanosheets from bagasse and its catalytic activity towards reductive amination of nitroarenes with bio-derived aldehydes. New Journal of Chemistry. 2020, 44, 18714–18723. [IF 3.288]
- 95. Patel, T. R.; Ganguly, B.; Revealing the origin of pi-facial and regioselectivity in the Diels-Alder reaction of unsymmetrical, cage-annulated 1,3-cyclohexadiene with ethyl propiolate dienophile: A DFT Study. ChemistrySelect. 2020, 5, 13524–13529. [IF 1.811]
- 96. Ghosh, T.; Mondal, A.; Vyas, A.; Mishra, S.; A 'one-tube' synthesis of a selective fluorescence 'turn off/on' DNA probe based on a C-phycocyanin-graphene oxide

- (CPC-GO) bio composite. International Journal of Biological Macromolecules. 2020, **163**, 977–984. [IF 5.162]
- 97. Singh, A. K.; Bhushan, M.; Shahi, V. K.; Alkaline stable thermal responsive cross-linked anion exchange membrane for the recovery of NaOH by electrodialysis. Desalination. 2020, 494, 114651. [IF 6.035]
- 98. Trivedi, J. S.; Bhalani, D. V.; Bhadu, G. R.; Jewrajka, S. K.; Multifunctional amines enable the formation of polyamide nanofilm composite ultrafiltration and nanofiltration membranes with modulated charge and performance. Journal of Materials Chemistry A. 2020, 08, 22436. [IF 11.301]
- Sahoo, J.; Jaiswar, S.; Jena, H. S.; Subramanian, P. S.; Sensing of phosphate and ATP by lanthanide complexes in aqueous medium and its application on living cells. ChemistrySelect. 2020, 05, 12878–12884. [IF 1.811]
- 100. Patel, M.; Rangani, J.; Kumari, A.; Parida, A. K.; Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/ or phosphorus starvation. Journal of Biotechnology. 2020, 323, 136-158. [IF 3.503]
- 101. Bhai, S.; Ganguly, B.; Role of the backbone of nucleic acids in the stability of Hg²⁺-mediated canonical base pairs and thymine-thymine mispair: a DFT study. RSC Advances. 2020, 10, 40969–40982. [IF 3.119]
- 102. Trivedi, J. S.; Bhadja, V.; Makwana, B. S.; Jewrajka, S. K.; Chatterjee, U.; Sustainable process for the preparation of potassium sulfate by electrodialysis and its concentration and purification by a nanofiltration process. RSC Advances. 2020, 6, 71807–71817. [IF 3.119]
- 103. Polisetti, V.; Ray, P.; Nanoparticles modified polyacrylonitrile/ polyacrylonitrile polyvinylidenefluoride blends as substrate of high flux anti-fouling nanofiltration membranes. Journal of Applied Polymer Science. 2020, 138, 50228. [IF 2.52]
- 104. Subburaj, S.; Kumar, P. S.; Kinetic and thermodynamic analysis on the abolition of toxic metals from wastewater using activated carbon produced from compost waste. Desalination and Water Treatment. 2020, 204, 270–284. [IF 0.854]
- 105. Polisetti, V.; Ray, P.; Thin film composite nanofiltration membranes with polystyrene sodium sulfonate-polypiperazinetrimesamide semi-interpenetrating polymer network active layer. Journal of Applied Polymer Science. 2020, 137, 49351. [IF 2.52]
- 106. Bhadu, G. R.; Parmar, B.; Patel, P.; Paul, A.; Chaudhari, J. C.; Srivastava, D. N.; Suresh, E.; Co@N-doped carbon nanomaterial derived by simple pyrolysis of mixed-ligand MOF as an active and stable oxygen evolution electrocatalyst. Applied Surface Science. 2020, 529, 147081. [IF 6.182]

- 107. Prajapati, P. K.; Singh, P. S.; In-solution structure formation of poly (vinylidene fluoride) building units influencing on the final membrane characteristics. Journal of Applied Polymer Science. 2021, 138, 50133. [IF 3.125]
- 108. Raviya, M. R.; Gauswami, M. V.; Raval, H. D.; A novel polysulfone/ iron-nickel oxide nanocomposite membrane for removal of heavy metal and protein from water. Water Environment Research. 2020, 92, 1990–1998. [IF 3.187]
- 109. Thiruselvi, D.; Yuvarani, M.; Salma, A.; Arafath, Y.; Jagadiswary, D.; Kumar, M. A.; Anuradha, D.; Shanmugam, P.; Sivanesan, S.; Enhanced biogas from sewage sludge digestion using iron nanocatalyst from Vitex negundoleaf extract: Response surface modelling. International Journal of Environmental Science and Technology. 2020, 18, 2161–2172. [IF 2.54]
- 110. Advani, J. H.; Bankar, B. D.; Bajaj, H. C.; Biradar, A. V.; Chitosan supported molybdate nanoclusters as an efficient catalyst for oxidation of alkenes and alcohols. Cellulose. 2020, 27, 8769–8783. [IF 4.21]
- 111. Sarkar, P.; Modak, S.; Karan, S.; Effect of porous and nonporous nanostructures on the permeance of positively charged nanofilm composite membranes. Advanced Materials Interfaces. 2020, 07, 2000251. [IF 4.948]
- 112. Patel, V.; Yadav, A.; Sahoo, S.; Thatoi, D.; Winczek, J.; A novel fixed-grid interface-tracking algorithm for rapid solidification of supercooled liquid metal. Numerical Heat Transfer, Part A: Applications. 2020, 78, 306-320. [IF 2.96]
- 113. Sarmah, T.; Dihingia, P.; Rahman, M.; Ghosh, J.; Chaudhuri, P.; Srivastava, D. N.; Satpati, B.; Kumar, S.; Kakati, M.; Temmerman, G. D.; Exposure of Indian RAFM under variation of He⁺ flux and target emperature in the CIMPLE-PSI linear device. Nuclear Fusion 2020, 609, 106026. [IF 3.706]
- 114. Patel, K.; Chikkali, S. H.; Sivaram, S.; Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications. Progress in Polymer Science 2020, 109, 101290. [IF 22.62]
- 115. Yadav, V.; Raj, S. K.; Rathod, N. H.; Kulshrestha, V.; Polysulfone/ graphene quantum dots composite anion exchange membrane for acid recovery by diffusion dialysis. Journal of Membrane Science 2020, 611, 118331. [IF 7.183]
- 116. Hao, N.; Alper, K.; Patel, H.; Tekin, K.; Karagoz, S.; Ragauskas, A. J.; One-step transformation of biomass to fuel precursors using a bi-functional combination of Pd/C and water tolerant Lewis acid. Fuel 2020, 277, 118200. [IF 5.578]
- Tanna, B.; Yadav, S.; Mishra, A.; Anti-proliferative and ROS-inhibitory activities reveal the anticancer potential of Caulerpa species. Molecular Biology Reports 2020, 47, 7403-7411. [IF 2.316]

- Sarkar, P.; Modak, S.; Karan, S.; Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration. Advanced Functional Materials 2021, 31, 2007054. [IF 16.836]
- **119.** Ghosh, T.; Mishra, S.; A natural cyanobacterial protein C-phycoerythrin as an HS-selective optical probe in aqueous systems. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, **239**, 118469. [IF 3.232]
- 120. Tiwari, S.; Sarolia, J.; Kansara, V.; Chudasama, N. A.; Prasad, K.; Ray, D.; Aswal, V. K.; Bahadur, P.; Synthesis, colloidal characterization and targetability of phenylboronic acid functionalized alpha-tocopheryl polyethylene glycol succinate in cancer cells. Polymers (Basel). 2020, 12, 2258. [3.426]
- 121. Kim, D.; Subramanian, S.; Thirion, D.; Song, Y.; Jamal, A.; Otaibi, M. S.; Yavuz, C. T.; Quaternary ammonium salt grafted nanoporous covalent organic polymer for atmospheric CO₂ fixation and cyclic carbonate formation. Catalysis Today 2020, 356, 527-534. [IF 5.825]
- 122. Kumar, J.; Suresh, E.; Bhadra, S.; Catalytic direct alpha-amination of arylacetic acid synthons with anilines. The Journal of Organic Chemistry 2020, 85, 13363-13374. [IF 4.335]
- 123. Pal, S.; Mondal, R.; Guha, S.; Chatterjee, U.; Jewrajka, S. K.; Crosslinked terpolymer anion exchange membranes for selective ion separation and acid recovery. Journal of Membrane Science 2020, 612, 118459. [IF 7.183]
- **124.** Alexander, A.; Singh, V. K.; Mishra, A.; Halotolerant PGPR *Stenotrophomonas maltophilia* BJ01 induces salt tolerance by modulating physiology and biochemical activities of *Arachis hypogaea*. Frontiers in Microbiology 2020, **17**, 568289. [IF 4.235]
- 125. Jaiswal, V. P.; Shukla, S. K.; Sharma, L.; Singh, I.; Pathak, A. D.; Nagargade, M.; Ghosh, A.; Gupta, C.; Gaur, A.; Awasthi, S. K.; Tiwari, R.; Srivastava, A.; Masto, E.; Potassium influencing physiological parameters, photosynthesis and sugarcane yield in subtropical India. Sugar Tech 2021, 23, 343-359. [IF 1.198]
- 126. Kumar, G.; Das, S. R.; Neogi, S.; Dual-catalyst engineered porous organic framework for visible-light triggered, metal-free and aerobic sp3 C-H activation in highly synergistic and recyclable fashion. Journal of Catalysis, 2021, 394, 40-49. [IF 7.920]
- 127. Kumar, G.; Pillai, R. S.; Khan, N. H.; Neogi, S.; Structural engineering in prefunctionalized, imine-based covalent organic framework via anchoring active Ru(II)-complex for visible-light triggered and aerobic cross-coupling of α-amino esters with indoles. Appl. Catal. B-Environ., 2021, 292, 120149. [IF 19.503]
- 128. Goswami, R.; Pal, T. K.; Neogi, S.; Stimuli-Triggered Fluoro-Switching in Metal-Organic Frameworks: Applications and Outlook. Dalton Trans., 2021, 50, 4067-4090. [IF 4.390]

- 129. Kumar, G.; Singh, M.; Goswami, R.; Neogi, S.; Structural dynamism-actuated reversible CO₂ adsorption switch and postmetalation-induced visible light C-alpha-H photocyanation with rare size selectivity in N-functionalized 3D covalent organic framework. ACS Applied Materials & Interfaces 2020, 12, 48642-48653. [IF 9.229]
- **130.** Dabi, M.; Agarwal, P.; Agarwal, P. K.; Overexpression of JcWRKY2 confers increased resistance towards *Macrophomina phaseolina* in transgenic tobacco. 3 Biotech 2020, **10**, 1-10. [IF 1.798]
- 131. Kushwaha, S.; Mane, M.; Ravindranathan, S.; Das, A.; Polymer nanorings with uranium specific clefts for selective recovery of uranium from acidic effluents via reductive adsorption. ACS Sensors 2020, 05, 3254-3263. [IF 7.333]
- 132. Mantri, V. A.; Kazi, M. A.; Balar, N. B.; Gupta, V.; Gajaria, T.; Concise review of green algal genus *Ulva linnaeus*. Journal of Applied Phycology 2020, 32, 2725-2741. [IF 3.016]
- 133. Andharia, J. K.; Bhattacharya, P.; Maiti, S.; Development and performance analysis of a mixed mode solar thermal dryer for drying of natural rubber sheets in the north-eastern part of India. Solar Energy 2020, 208, 1091-1102. [IF 4.608]
- 134. Bhushan, M.; Mani, M.; Singh, A. K.; Panda, A. B.; Shahi, V. K.; Self-standing polyaniline membrane containing quaternary ammonium groups loaded with hollow spherical NiCo₂O₄ electrocatalyst for alkaline water electrolyser. Journal of Materials Chemistry A 2020, **08**, 17089-17097. [IF 11.301]
- 135. Arora, K.; Karthikeyan, S.; Shiekh, B. A.; Kaur, M.; Singh, H.; Bhadu, G. R.; Kang, T. S.; In situpreparation of a nanocomposite comprising graphene and alpha-Fe₂O₃ nanospindles for the photo-degradation of antibiotics under visible light. New Journal of Chemistry 2020, 44, 15567-15573. [IF 3.288]
- 136. Samikannu, A.; Konwar, L. J.; Rajendran, K.; Lee, C. C.; Shchukarev, A.; Virtanen, P.; Mikkola, J. P.; Highly dispersed NbOPO₄/SBA-15 as a versatile acid catalyst upon production of renewable jet-fuel from bio-based furanics via hydroxyalkylation-alkylation (HAA) and hydrodeoxygenation (HDO) reactions. Applied Catalysis B: Environmental 2020, 272, 118987. [IF 16.683]
- 137. Lee, J.; Song, I.; Shinde, P. B.; Nimse, S. B.; Macrocycles and supramolecules as antioxidants: Excellent scaffolds for development of potential therapeutic agents. Antioxidants 2020, **09**, 859. [IF 5.014]
- 138. Bhingaradiya, N.; Singh, A. K. C.; Biswas, A.; Kumar, A.; Yadav, A.; Maiti, P.; Jewrajka, S. K.; Gold nanoparticle promoted formation and biological properties of injectable hydrogels. Biomacromolecules 2020, 21, 3782-3794. [IF 6.092]
- 139. Natarajan, K.; Dave, S.; Bajaj, H. C.; Tayade, R. J.; Enhanced photocatalytic degradation of nitrobenzene using MWCNT/beta-ZnMoO₄ composites under UV light emitting diodes (LEDs). Materials Today Chemistry 2020, 17, 100331. [IF 6.8]

- 140. Patel, N. B.; Vala, N.; Shukla, A.; Neogi, S.; Mishra, M. K.; Borrowing hydrogen activity of NH₂-MIL-125 for N-alkylation of amines with alcohols under solvent and base free condition. Catalysis Communications 2020, 144, 106085. [IF 3.612]
- 141. Rawat, D.; Kumar, R.; Subbarayappa, A.; Visible-light induced phosphonation of quinoxalines and quinoxalin-2(1H)-ones under aerobic metal-free conditions. Green Chemistry 2020, 22, 6170-6175. [IF 9.48]
- 142. Kuddushi, M.; Kumar, A.; Ray, D.; Aswal, V.; El Seoud, O. A.; Malek, N. I.; Concentration- and temperature-responsive reversible transition in amidefunctionalized surface-active ionic liquids: Micelles to vesicles to organogel. ACS Omega 2020, 05, 24272-24284. [IF 2.87]
- 143. Rathod, N. H.; Sharma, J.; Raj, S. K.; Yadav, V.; Rajput, A.; Kulshrestha, V.; Fabrication of a stable and efficient bipolar membrane by incorporation of nano-MoS₂ interfacial layer for conversion of salt into corresponding acid and alkali by water dissociation using electrodialysis. ACS Sustainable Chemistry & Engineering 2020, 08, 13019-13029. [IF 7.632]
- **144.** Yadav, S. K.; Khatri, K.; Rathore, M. S.; Jha, B.; Ectopic expression of a transmembrane protein *KaCyt b*₆ from a red seaweed *Kappaphycus alvarezii* in transgenic tobacco augmented the photosynthesis and growth. DNA and Cell Biology (2020) [Ahead of print] [DoI: 10.1089/dna.2020.5479]. [IF 3.191]
- 145. Dey, A.; Maity, A.; Singha M. T.; Suresh, E.; Mandal, A. K.; Das, A.; A tuneable hierarchical self-assembly of a C-3-symmetric triaminoguanidinium-derivative into a rhombic dodecahedral morphology. CrystEngComm 2020, 22, 5117-5121. [IF 3.117]
- **146.** Nair, R. R.; Raju, M.; Debnath, S.; Ghosh, R.; Chatterjee, P. B.; Concurrent detection and treatment of cyanide-contaminated water using mechanosynthesized receptors. Analyst 2020, **145**, 5647-5656. [IF 3.978]
- 147. Sequeira, R. A.; Dubey, S.; Pereira, M. M.; Maity, T. K.; Singh, S.; Mishra, S.; Prasad, K.; Neoteric solvent systems as sustainable media for dissolution and film preparation of Poly-[(R)-3-hydroxybutyrate]. ACS Sustainable Chemistry & Engineering 2020, 08, 12005-12013. [IF 7.632]
- 148. Dey, S.; Kumar, A.; Mahto, A.; Raval, I. H.; Modi, K. M.; Haldar, S.; Jain, V. K.; Oxacalix[4]arene templated silver nanoparticles as dual readout sensor: Developing portable kit for rapid detection of methylmercury and its speciation. Sensors and Actuators B: Chemical 2020, 317, 128180. [IF 7.1]
- 149. Maniya, N. H.; Srivastava, D. N.; Fabrication of porous silicon based label-free optical biosensor for heat shock protein 70 detection. Materials Science in Semiconductor Processing 2020, 115, 105126. [IF 3.086]

- **150.** Tiwari, K.; Mishra, M.; Singh, S.; Singh, V. P.; The colorimetric signaling of water content by a deprotonated Schiff Base in some aprotic organic solvents. ChemistrySelect 2020, **05**, 9547-9553. [IF 1.811]
- 151. Advani, J. H.; Ravi, K.; Naikwadi, D. R.; Bajaj, H. C.; Gawande, M. B.; Biradar, A. V.; Bio-waste chitosan-derived N-doped CNT-supported Ni nanoparticles for selective hydrogenation of nitroarenes. Dalton Transactions 2020, 49, 10431-10440. [IF 4.174]
- **152.** Jacob, P. T.; Siddiqui, S. A.; Rathore, M. S.; Seed germination, seedling growth and seedling development associated physiochemical changes in *Salicornia brachiata* (Roxb.) under salinity and osmotic stress. Aquatic Botany 2020, **166**, 103272. [IF 2.473]
- **153.** Baghel, R. S.; Suthar, P.; Gajaria, T. K.; Bhattacharya, S.; Anil, A.; Reddy, C. R. K.; Seaweed biorefinery: A sustainable process for valorising the biomass of brown seaweed. Journal of Cleaner Production 2020, **263**, 121359. [IF 7.246]
- **154.** Patidar, R.; Rebary, B.; Bhadu, G. R.; Patel, G.; ICP-MS method development and validation for determination of trace elemental impurities in caustic potash. International Journal of Mass Spectrometry 2020, **454**, 116356. [IF 2.09]
- 155. Chandarana, H.; Suganya, S.; Madhava, A. K.; Surface functionalized *Casuarina* equisetifolia pine powder for the removal of hetero-polyaromatic dye: characteristics and adsorption. International Journal of Environmental Analytical Chemistry (2020) [Ahead of print] [DoI: 10.1080/03067319.2020.1798418]. [IF 1.431]
- 156. Chinnaraja, E.; Arunachalam, R.; Pillai, R. S.; Peuronen, A.; Rissanen, K.; Subramanian, P. S.; One-pot synthesis of [2+2]-helicate-like macrocycle and 2+4-μ4- oxo tetranuclear open frame complexes: Chiroptical properties and asymmetric oxidative coupling of 2-naphthols. Applied Organometallic Chemistry 2020, 34, e5666. [IF 3.14]
- 157. Yadav, V.; Niluroutu, N.; Bhat, S. D.; Kulshrestha, V.; Insight toward the electrochemical properties of sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) via impregnating functionalized boron nitride: Alternate composite polymer electrolyte for direct methanol fuel cell. ACS Applied Energy Materials 2020, 03, 7091-7102. [IF 4.473]
- 158. Kurisingal, J. F.; Rachuri, Y.; Gu, Y.; Chitumalla, R. K.; Vuppala, S.; Jang, J.; Bisht, K. K.; Suresh, E.; Park, D.; Facile green synthesis of new copper-based metal-organic frameworks: Experimental and theoretical study of the CO₂ fixation reaction. ACS Sustainable Chemistry & Engineering 2020, 08, 10822-10832. [IF 7.632]
- **159.** Bhatt, M.; Bhatt, S.; Vyas, G.; Raval, I. H.; Haldar, S.; Paul, P.; Water-dispersible fluorescent carbon dots as bioimaging agents and probes for Hg²⁺ and Cu²⁺ ions. ACS Applied Nano Materials 2020, **03**, 7096-7104. [IF 7.632]

- **160.** Shahi, V. K.; Kulshrestha, V.; Preface to the special issue on IGWMWE 2019. International Journal of Hydrogen Energy 2020, **45**, 18601-18601. [IF 4.939]
- 161. Saha, A.; Paul, A.; Srivastava, D. N.; Panda, A. B.; Exfoliated colloidal MoS₂ nanosheet with predominantly 1T phase for electrocatalytic hydrogen production. International Journal of Hydrogen Energy 2020, 45, 18645-18656. [IF 4.939]
- 162. Sharma, P.; Manohar, M.; Kumar, S.; Shahi, V. K.; Highly charged and stable cross-linked polysulfone alkaline membrane for fuel cell applications: 4,4'-((3,3'-bis(chloromethyl)-(1,1'-biphenyl)-4,4-diyl) bis(oxy)) dianiline (BCBD) a novel cross-linker. International Journal of Hydrogen Energy 2020, 45, 18693-18703. [IF 4.939]
- 163. Chesnokova, A.; Lebedeva, O. V.; Malakhova, E. A.; Raskulova, T. V.; Kulshrestha, V.; Kuzmin, A. V.; Pozdnyakov, A. S.; Pozhidaev, Y. N.; New non-fluoridated hybrid proton exchange membranes based on commercial precursors. International Journal of Hydrogen Energy 2020, 45, 18716-18730. [IF 4.939]
- 164. Singh, H.; Sreedharan, S.; Oyarzabal, E.; Mahapatra, T. S.; Green, N.; Shih, Y. I.; Das, M.; Thomas, J. A.; Pramanik, S. K.; Das, A.; Mitochondriotropic lanthanide nanorods: implications for multimodal imaging. Chemical Communications 2020, 56, 7945-7948. [IF 5.996]
- 165. Gajaria, T. K.; Bhatt, H.; Khandelwal, A.; Vasu, V. T.; Reddy, C. R. K.; Lakshmi, D. S.; A facile chemical cross-linking approach toward the fabrication of a sustainable porous ulvan scaffold. Journal of Bioactive and Compatible Polymers 2020, 35, 301-313. [IF 1.624]
- 166. Kholiya, F.; Chatterjee, S.; Bhojani, G.; Sen, S.; Barkume, M.; Kasinathan, N. K.; Kode, J.; Meena, R.; Seaweed polysaccharide derived bioaldehyde nanocomposite: Potential application in anticancer therapeutics. Carbohydrate Polymers 2020, 240, 116282. [IF 7.182]
- 167. Advani, J. H.; Singh, A. S.; Khan, N. H.; Bajaj, H. C.; Biradar, A. V.; Black yet green: Sulfonic acid functionalized carbon as an efficient catalyst for highly selective isomerization of alpha-pinene oxide to trans-carveol. Applied Catalysis B: Environmental 2020, 268, 118456. [IF 16.683]
- 168. Sharma, P. P.; Gupta, H.; Kulshrestha, V.; Phosphorylated hybrid silica-sulfonated polyethersulfone composite proton-exchange membranes: Magnetic resonance investigation for enhanced proton-exchange dynamics. International Journal of Hydrogen Energy 2020, 45, 16955-16964. [IF 4.939]
- 169. Rajput, A.; Sharma, P. P.; Yadav, V.; Kulshrestha, V.; Highly stable graphene oxide composite proton exchange membrane for electro-chemical energy application. International Journal of Hydrogen Energy 2020, 45, 16976-16983. [IF 4.939]
- 170. Yadav, V.; Rajput, A.; Rathod, N. H.; Kulshrestha, V.; Enhancement in proton conductivity and methanol cross-over resistance by sulfonated boron nitride composite

- sulfonated poly (ether ether ketone) proton exchange membrane. International Journal of Hydrogen Energy 2020, **45**, 17017-17028. [IF 4.939]
- 171. Chawla, A.; Verma, S.; Godara, S.; Bhadu, G. R.; Singh, A.; Singh, M.; Understanding phase segregation using Rietveld analysis and the dielectric, ferroelectric properties of Ba_(1-x)Ca_xTiO₃ solid solutions. Journal of Electronic Materials 2020, 49, 4111-4122. [IF 1.774]
- 172. Gahlot, S.; Kulshrestha, V.; Graphene based polymer electrolyte membranes for electro-chemical energy applications. International Journal of Hydrogen Energy 2020, 45, 17029-17056. [IF 4.939]
- 173. Lakshmi, D. S.; Sankaranarayanan, S.; Gajaria, T. K.; Li, G.; Kujawski, W.; Kujawa, J.; Navia, R.; A short review on the valorization of green seaweeds and ulvan: Feedstock for chemicals and biomaterials. Biomolecules 2020, 10, 991. [IF 4.082]
- 174. Sahu, P.; Krishnaswamy, S.; Pande, N. K.; Process intensification using a novel continuous U-shaped crystallizer for freeze desalination. Chemical Engineering and Processing-Process Intensification. 2020, 153, 107970 [IF 3.731]
- 175. Seneca, S.; Pramanik, S. K.; D'Olieslaeger, L.; Reekmans, G.; Vanderzande, D.; Adriaensens, P.; Ethirajan, A.; Nanocapsules with stimuli-responsive moieties for controlled release employing light and enzymatic triggers. Materials Chemistry Frontiers. 2020, 04, 2103 [IF 6.788]
- 176. Makwana, D.; Polisetti, V.; Castano, J.; Ray, P.; Bajaj, H. C.; Mg-Fe layered double hydroxide modified montmorillonite as hydrophilic nanofiller in polysulfone-polyvinylpyrrolidone blend ultrafiltration membranes: Separation of oil-water mixture. Applied Clay Science. 2020, 192, 105636 [IF 4.605]
- 177. Velugula, K.; Kumar, A.; Chinta, J. P.; Nuclease and anticancer activity of antioxidant conjugated terpyridine metal complexes. Inorganica Chimica Acta. 2020, 507, 119596 [IF 2.304]
- 178. Mulik, B. B.; Bankar, B. D.; Munde, A. V.; Biradar, A. V.; Sathe, B. R.; Bismuth-oxide-decorated graphene oxide hybrids for catalytic and electrocatalytic reduction of CO₂. Chemistry-A European Journal. 2020, 26, 8801 [IF 4.857]
- 179. Dineshkumar, R.; Sen, R.; A sustainable perspective of microalgal biorefinery for coproduction and recovery of high-value carotenoid and biofuel with CO₂ valorization. Biofuels Bioproducts & Biorefining-Biofpr. 2020, 14, 879 [IF 4.528]
- **180.** Arunachalam, R.; Chinnaraja, E.; Subramanian, S.; Suresh, E.; Subramanian, P. S.; Catalytic conversion of carbon dioxide using binuclear double-stranded helicates: Cyclic carbonate from epoxides and diol. ACS Omega. 2020, **05**, 14890 [IF 2.87]
- 181. Ghadge, V.; Kumar, P.; Singh, S.; Mathew, D. E.; Bhattacharya, S.; Nimse, S. B.; Shinde, P. B.; Natural melanin produced by the endophytic bacillus subtilis 4NP-BL

- associated with the halophyte *Salicornia brachiate*. Journal of Agricultural and Food Chemistry. 2020, **68**, 6854 [IF 4.192]
- 182. Naikwadi, D. R.; Ravi, K.; Singh, A. S.; Advani, J. H.; Biradar, A. V.; Gram-scale synthesis of flavoring ketones in one pot via alkylation-decarboxylation on benzylic carbon using a commercial solid acid catalyst. ACS Omega. 2020, 05, 14291 [IF 2.87]
- 183. Malar, C. G.; Seenuvasan, M.; Kumar, K. S.; Kumar, A.; Parthiban, R.; Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect. Biochemical Engineering Journal. 2020, 158, 107574 [IF 3.475]
- **184.** Campbell, M. T.; Du, Q.; Liu, K.; Sharma, S.; Zhang, C.; Walia, H.; Characterization of the transcriptional divergence between the subspecies of cultivated rice (Oryza sativa). BMC Genomics. 2020, **21**, 394 [IF 3.594]
- 185. Singh, A. S.; Advani, J. H.; Biradar, A. V.; Phosphonate functionalized carbon spheres as bronsted acid catalysts for the valorization of bio-renewable alpha-pinene oxide to trans-carveol. Dalton Transactions. 2020, 49, 7210 [IF 4.174]
- 186. Gaikwad, S. R.; Patel, K.; Deshmukh, S. S.; Mote, N. R.; Birajdar, R. S.; Pandole, S. P.; Chugh, J.; Chikkali, S. H.; Palladium-catalyzed insertion of ethylene and 1,1-disubstituted difunctional olefins: An experimental and computational study. ChemPlusChem. 2020, 85, 1200 [IF 2.753]
- 187. Agarwal, P.; Patel, K.; More, P.; Sapara, K. K.; Singh, V. K.; Agarwal, P. K.; The AlRabring7 E3-Ub-ligase mediates AlRab7 ubiquitination and improves ionic and oxidative stress tolerance in Saccharomyces cerevisiae. Plant Physiology and Biochemistry. 2020, 151, 689 [IF 3.72]
- 188. Patel, N. P.; Shimpi, G. G.; Haldar, S.; Evaluation of heterotrophic bacteria associated with healthy and bleached corals of Gulf of Kutch, Gujarat, India for siderophore production and their response to climate change factors. Ecological Indicators. 2020, 113, 106219 [IF 4.229]
- 189. Shinde, A. H.; Raval, I. H.; Haldar, S.; SXT int harboring bacteria as effective indicators to determine high-risk reservoirs of multiple antibiotic resistance in different aquatic environments of western coast of Gujarat, India. Ecological Indicators. 2020, 113, 106143 [IF 4.229]
- **190.** Chaudhary, D. R.; Rathore, A. P.; Sharma, S.; Effect of halotolerant plant growth promoting rhizobacteria inoculation on soil microbial community structure and nutrients. Applied Soil Ecology. 2020, **150**, 103461 [IF 3.187]
- 191. Kim, J.; Chaudhary, D. R.; Kang, H.; Nitrogen addition differently alters GHGs production and soil microbial community of tidal salt marsh soil depending on the types of halophyte. Applied Soil Ecology. 2020, 150, 103440 [IF 3.187]

- **192.** Kumari, J; Rathore, M. S.; Na⁺/K⁺-ATPase a primary membrane transporter: An overview and recent advances with special reference to algae. Journal of Membrane Biology. 2020, **253**, 191 [IF 1.877]
- 193. Sambhwani, K.; Modi, J.; Singhala, A.; Bramhabatt, H.; Mishra, A.; Mantri, V. A.; Analysis of functional traits in female gametophytic and tetrasporophytic life phases of industrially important red alga Gracilaria dura (Rhodophyta: Gracilariacae). Journal of Applied Phycology. 2020, 32, 1961 [IF 3.016]
- **194.** Kumar, R.; Rawat, D.; Adimurthy, S.; Polyethylene glycol (PEG-400) as methylene spacer and green solvent for the synthesis of heterodiarylmethanes under metal-free conditions. European Journal of Organic Chemistry. 2020, **2020**, 3499 [IF 2.889]
- 195. Sudharsan, M.; Subramanian, S.; Amali, A. J.; Suresh, D.; Palladium nanoparticles incorporated thiazoline functionalized periodic mesoporous organosilica: Efficient catalyst for selective hydrogenation & C-sp²-C-sp² bond formation reactions. ChemistrySelect. 2020, 05, 6131 [IF 1.811]
- 196. Yadav, V.; Rajput, A.; Kulshrestha, V.; Sulfonated poly (ether sulfone) based sulfonated molybdenum sulfide composite membranes and their applications in salt removal and alkali recovery. Journal of Membrane Science. 603, 2020, 118043 IF [8.743]
- 197. Santosh, V.; Babu, P. V.; Gopinath, J.; Rao, N. N. M.; Sainath, A. V. S.; Reddy, A. V. R.; Development of hydroxyl and carboxylic acid functionalized CNTs-polysulphone nanocomposite fouling-resistant ultrafiltration membranes for oil-water separation. Bulletin of Materials Science. 2020, 43, 125 [IF 1.392]
- 198. Rathod, N. H.; Yadav, V.; Rajput, A.; Sharma, J.; Shukla, D. K.; Kulshrestha, V.; New class of composite anion exchange membranes based on quaternized poly (phenylene oxide) and functionalized boron nitride. Colloid and Interface Science Communications. 2020, 36, 100265 [IF 2.831]
- 199. Rangani, J.; Panda, A.; Parida, A. K.; Metabolomic study reveals key metabolic adjustments in the xerohalophyte *Salvadora persica* L. during adaptation to water deficit and subsequent recovery conditions. Plant Physiology and Biochemistry. 2020, 150, 180 [IF 3.72]
- 200. Hu, Y.; Subramanian, P. S.; Albrecht, M.; Europium (III) complexes of amino acidderived bis-imine-substituted phenanthroline ligands for phosphate recognition. Inorganica Chimica Acta. 2020, 504, 119428 [IF 2.304]
- 201. Raval, I. H.; Labala, R. K.; Raval, K. H.; Chatterjee, S.; Haldar, S.; Characterization of VopJ by modelling, docking and molecular dynamics simulation with reference to its role in infection of enteropathogen *Vibrio parahaemolyticus*. Journal of Biomolecular Structure & Dynamics. 2020, 39, 1572 [IF 3.31]

- 202. Wakchaure, P. D.; Ganguly, B.; Probing the bent bonds in cyclopropane systems for gas storage and separation process: A computational study. Journal of Computational Chemistry. 2020, 41, 1271 [IF 2.976]
- 203. Carol, T. T.; Mohammed, J.; Basandrai, D.; Godara, S. K.; Bhadu, G. R.; Mishra, S.; Aggarwal, N.; Narang, S. B.; Srivastava, A. K.; X-band shielding of electromagnetic interference (EMI) by Co₂Y barium hexaferrite, bismuth copper titanate (BCTO), and polyaniline (PANI) composite. Journal of Magnetism and Magnetic Materials. 2020, 501, 166433 [IF 2.717]
- **204.** Ghosh, T.; Chatterjee, S.; Bhayani, K.; Mishra, S.; A natural cyanobacterial protein C-phycoerythrin as an Hg²⁺ selective fluorescent probe in aqueous systems. New Journal of Chemistry. 2020, **44**, 6601 [IF 3.288]
- 205. Yadav, S.; Rathore, M. S.; Mishra, A.; The pyruvate-phosphate dikinase (C₄-SmPPDK) gene from *suaeda monoica* enhances photosynthesis, carbon assimilation, and abiotic stress tolerance in a C₃ plant under elevated CO₂ conditions. Frontiers in Plant Science. 2020, 11, 345 [IF 4.402]
- 206. Maalige, R. N.; Dsouza, S. A.; Pereira, M. M.; Polisetti, V.; Mondal, D.; Nataraj, S. K.; Introducing deep eutectic solvents as flux boosting and surface cleaning agents for thin film composite polyamide membranes. Green Chemistry. 2020, 22, 2381 [IF 9.48]
- **207.** Annes, S. B.; Saritha, R.; Subramanian, S.; Shankar, B.; Ramesh, S.; Solvent-free and montmorillonite K10-catalyzed domino reactions for the synthesis of pyrazoles with alkynylester as a dual synthon. Green Chemistry. 2020, **22**, 2388 [IF 9.48]
- 208. Damarla, K.; Mehra, S.; Bahadur, P.; Ray, D.; Aswal, V. K.; Kumar, A.; Versatile surface-active ionic liquid: construction of microemulsions and their applications in light harvesting. Physical Chemistry Chemical Physics. 2020, 22, 8157 [IF 3.43]
- 209. Kulshrestha, A.; Gehlot, P. S.; Kumar, A.; Magnetic proline-based ionic liquid surfactant as a nano-carrier for hydrophobic drug delivery. Journal of Materials Chemistry B. 2020, 08, 3050 [IF 5.344]
- 210. Saritha, R.; Annes, S. B.; Subramanian, S.; Ramesh, S.; Carbazole based Electron Donor Acceptor (EDA) catalysis for the synthesis of biaryl and aryl-heteroaryl compounds. Organic & Biomolecular Chemistry. 2020, 18, 2510 [IF 3.412]
- **211.** Saha, A.; Ganguly, B.; A DFT study to probe homo-conjugated norbornylogous bridged spacers in dye-sensitized solar cells: an approach to suppressing agglomeration of dye molecules. RSC Advances. 2020, **10**, 15307 [IF 3.119]
- 212. Ram, S.; Tirkey, S. R.; Kumar, M. A.; Mishra, S.; Ameliorating process parameters for zeaxanthin yield in Arthrobacter gandavensis MTCC 25325. AMB Express. 2020, 10, 69 [IF 2.499]
- 213. Mohammed, J.; Carol, T. T. T.; Mulchtar, G.; Kumar, V.; Bhadu, G. R.; Godara, S. K.; Maji, P. K.; Srivastava, A. K.; Phase structure evolution, crystal structure refinement,

- morphology, and electro-optical properties of heat-treated Ca_{0.9}Ni_{0.1}Cu_{2.9}La_{0.1}Ti₄O₁₂. Ceramics International. 2020, **46**, 7187 [IF 3.83]
- 214. Sharma, M.; Tavares, A. P. M.; Nunes, J. C. F.; Singh, N.; Mondal, D.; Neves, M. C.; Prasad, K.; Freire, M. G.; Hybrid alginate-protein cryogel beads: efficient and sustainable bio-based materials to purify immunoglobulin G antibodies. Green Chemistry. 2020, 22, 2225 [IF 9.48]
- 215. Vyas, G.; Bhatt, S.; Si, M. K.; Jindani, S; Suresh, E.; Ganguly, B.; Paul, P.; Colorimetric dual sensor for Cu(II) and tyrosine and its application as paper strips for detection in water and human saliva as real samples. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy. 2020, 230, 118052 [IF 3.232]
- **216.** Arul, A.; Sivagnanam, S.; Dey, A.; Mukherjee, O.; Ghosh, S.; Das, P.; The design and development of short peptide-based novel smart materials to prevent fouling by the formation of non-toxic and biocompatible coatings. RSC Advances. 2020, **10**, 13420 [IF 3.119]
- 217. Ram, S.; Mitra, M.; Shah, F.; Tirkey, S. R.; Mishra, S.; Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. Journal of Functional Foods. 2020, 67, 103867 [IF 3.701]
- 218. Patel, H.; Mueller, F.; Maiti, P.; Maiti, S.; Economic evaluation of solar-driven thermochemical conversion of empty cotton boll biomass to syngas and potassic fertilizer. Energy Conversion and Management. 2020, 209, 112631 [IF 8.208]
- 219. Kholiya, F.; Rathod, M. R.; Gangapur, D. R.; Adimurthy, S.; Meena, R.; An integrated effluent free process for the production of 5-hydroxymethyl furfural (HMF), levulinic acid (LA) and KNS-ML from aqueous seaweed extract. Carbohydrate Research. 2020, 490, 107953 [IF 1.841]
- **220.** Pandey, K. B.; Haldar, S.; Chauhan, S. S.; COVID-2019 pandemic: time to think outside the box. NAM STI Bulletin. 2021, **01**, 13-16.

2. पुरुतक/ पुरुतक में अध्याय [Book/ Chapters in Books]

Title of the chapter	Degradation of pharmaceutical pollutants under UV light using TiO ₂ nanomaterial synthesized through reverse micelle nanodomains.
Authors	K. S. Varma, B. Bharatiya, R. J. Tayade, A. D. Shukla, P. A. Joshi, V. Gandhi.
Title of the book	Advances in Wastewater Treatment I
Editor	Dr. Kinjal J. Shah, Dr. Vimal Gandhi
Publisher	Materials Research Forum
Book identifier number (ISBN, DOI etc.)	ISBN: 978-1-64490-114-4

Publishing year	2021
Page numbers	38-87

Title of the chapter	Photocatalytic degradation of levofloxacin by Cu doped TiO ₂ under visible LED lights.
Authors	K. S. Varma, B. Bharatiya, R. J. Tayade, A. D. Shukla, P. A. Joshi, V. Gandhi.
Title of the Book	Advances in Wastewater Treatment II
Editor	Dr. Kinjal J. Shah, Dr. Vimal Gandhi
Publisher	Materials Research Forum
Book identifier number (ISBN, DOI etc.)	ISBN: 978-1-64490-138-0
Publishing year	2021
Page numbers	87-110

Title of the chapter	Preparation of cyclohexanol intermediates from lignin through catalytic intervention
Authors	S. Gundekari, J. Mitra, T. Bhaskar, K. Srinivasan
Title of the Book	Lignin Biorefinery: Biomass, Biofuels, Biochemicals
Editor	T. Bhaskar, A. Pandey.
Publisher	Elsevier
Book identifier number (ISBN,DOI etc.)	ISBN: 978-0-12-820294-4
Publishing year	2021
Page numbers	57-82
Title of the chapter	Catalytic approaches for the selective preparation of cyclohexanone from lignin-based methoxyphenols/phenols
Authors	S. Gundekari, B. Biswas, V. Mohan, K. Srinivasan, T. Bhaskar.
Title of the Book	Lignin Biorefinery: Biomass, Biofuels, Biochemicals
Editor	T. Bhaskar, A. Pandey.
Publisher	Elsevier
Book identifier number (ISBN, DOI etc.)	ISBN: 978-0-12-820294-4
Publishing year	2021
Page numbers	301-327

Title of the chapter	Efficient homogeneous catalysts for conversion of
----------------------	---

	CO ₂ to fine chemicals
Authors	R. Arunachalam, E. Chinnaraja, P. S. Subramanian
Title of the Book	Catalysis for Clean Energy and Environmental Sustainability Petrochemicals and Refining Processes - Volume 2
Editor	K. K. Pant, S. K. Gupta, E. Ahmad
Publisher	Springer Nature Switzerland AG
Book identifier number (ISBN, DOI etc.)	ISBN: 978-3-030-65021-6
Publishing year	2021
Page numbers	599-641

	C(sp ³)–H bond hetero-functionalization of aliphatic
Title of the chapter	carboxylic acid equivalents enabled by transition
	metals.
Authors	A. Gupta, S. Gundekari, S. Bhadra
	Catalysis for Clean Energy and Environmental
Title of the Book	Sustainability Biomass Conversion and Green
	Chemistry - Volume 1
Editor	K. K. Pant, S. K. Gupta, E. Ahmad
Publisher	Springer Nature Switzerland AG
Book identifier number (ISBN, DOI	ISBN: 978-3-030-65016-2
etc.)	ISBN: 978-3-030-03010-2
Publishing year	2021
Page numbers	383-428
Tide of the chanter	Levulinic acid and furan-based multifunctional
Title of the chapter	materials: Opportunities and challenges
Authors	S. Gundekari, R. Kalusulingam, B. Dakhara, M.
Authors	Mariappan, J. Mitra, K. Srinivasan.
	Catalysis for Clean Energy and Environmental
Title of the Book	Sustainability Petrochemicals and Refining
	Processes - Volume 2
Editor	K. K. Pant, S. K. Gupta, E. Ahmad
Publisher	Springer Nature Switzerland AG
Book identifier number (ISBN, DOI	978-3-030-65016-2
etc.)	770-3-030-03010-2
Publishing year	2021
Page numbers	291–343

Title of the chapter	Next generation nanomaterials for environmental
Title of the chapter	industries: Prospects and challenges.

Authors	A. Shelte, S. Pratihar
Title of the Book	Green Functionalized Nanomaterials for Environmental Applications.
Editor	U. S. Chaudhery, H. M. Rani
Publisher	Elsevier
Book identifier number (ISBN,DOI etc.)	ISBN: 9780128231371.
Publishing year	2021
Page numbers	599-641

Title of the chapter	Effect of bacterial attachment on permeable membranes aided by extracellular polymeric substances.
Authors	S. Suganya, M. A. Kumar, S. Haldar
Title of the Book	Microbial and Natural Macromolecules
Editor	S. Das, H. R. Dash
Publisher	Elsevier
Book identifier number (ISBN,DOI etc.)	ISBN: 978-0-12-820084-1
Publishing year	2021
Page numbers	733-749

Title of the chapter	Microbial degradation of plastics and its biotechnological advancement
Authors	A. Kumari, D. R. Chaudhary, B. Jha
Title of the Book	Environmental biotechnology Vol. 3: Environmental chemistry for a sustainable world.
Editor	K. M. Gothandam, S. Ranjan, N. Dasgupta, E. Lichtfouse
Publisher	Springer, Cham.
Book identifier number (ISBN, DOI etc.)	978-3-030-48972-4
Publishing year	2021
Page numbers	1-30

Title of the chapter	Synthesis and applications of chitosan: A contemporary macromolecule.
Authors	C. G. Malar, M. Seenuvasan, K. S. Kumar, M. K. Anil
Title of the Book	Microbial and Natural Macromolecules
Editor	S. Das, H. Dash

Publisher	Elsevier
Book identifier number (ISBN, DOI etc.)	ISBN: 978-0-12-820084-2
Publishing year	2021
Page numbers	73-86

Title of the chapter	Diamines as tunable chemicals in thin film
Title of the chapter	composite membrane formation.
Authors	R. Mehta, A. Bhattacharya
Title of the Book	Advances in Chemistry Research
Editor	J. C. Taylor
Publisher	Nova Science Publisher
Book identifier number (ISBN, DOI	ISBN: 978-1-53617-921-7
etc.)	13BN. 776-1-33017-721-7
Publishing year	2020
Page numbers	201

Title of the chapter	Role of natural polyphenols in oxidative stress: Prevention of diabetes.
Authors	B. K. Tiwari, K. B. Pandey
Title of the Book	Assessment of Medicinal Plants for Human Health
Editor	M. R. Goyal, D. N. Chauhan
Publisher	Apple Academic Press (Taylor & Francis Group) USA
Book identifier number (ISBN, DOI etc.)	ISBN: 9781771888578
Publishing year	2020
Page numbers	103-118

Title of the chapter	Microbial-assisted heavy metal remediation: Bottlenecks and prospects.
Authors	A. Bhayani, K. Mehta, S. Bhattacharya, S. Mishra, R. Dineshkumar
Title of the Book	Removal of Toxic Pollutants Through Microbiological and Tertiary Treatment
Editor	M. P. Shah
Publisher	Elsevier
Book identifier number (ISBN, DOI etc.)	978-0-12-821014-7
Publishing year	2020

Page numbers	349-372
Title of the chapter	Arsenic tolerance mechanisms in plants and potential role of arsenic hyperaccumulating plants for phytoremediation of arsenic-contaminated soil
Authors	M. Patel, A. Kumari, A. K. Parida
Title of the Book	Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II
Editor	M. Hanuzzaman
Publisher	Springer. SA, Switzerland
Book identifier number (ISBN, DOI etc.)	978-981-15-2172-0
Publishing year	2020
Page numbers	137-162

Title of the chapter	Classification, characterization, and properties of edible and non-edible biomass feedstocks.
Authors	S. Gundekari, J. Mitra, M. Varkolu
Title of the Book	Advanced Functional Solid Catalysts for Biomass Valorization
Editor	M. H. Chaudhery, P. Sundarsanam
Publisher	Elsevier
Book identifier number (ISBN, DOI etc.)	ISBN: 978-0-12-820236-4
Publishing year	2020
Page numbers	89-120

Title of the chapter	Designing multicomponent biodegradable/biocompatible amphiphilic polymer co-network for biomedical applications.
Authors	A. K. S. Chandel, S. K. Jewrajka
Title of the Book	Apmphiphilic Polymer Co-network: Synthesis Properties, Modelling and Application
Editor	C. S. Patrickios
Publisher	Royal Society of Chemistry
Book identifier number (ISBN, DOI etc.)	978-1-78801-370-3
Publishing year	2020
Page numbers	47-76

Title of the chapter	Special adaptive features of plant species in response to salinity.
Authors	P. Agarwal, M. Dabi, K. Kinhekar, D. R. Gangapur, P. K. Agarwal
Title of the Book	Salt and Drought Stress Tolerance in Plants, Vol. 1.
Editor	M. Hasanuzzaman, M. Tanveer
Publisher	Springer
Book identifier number (ISBN, DOI etc.)	ISBN: 978-3-030-40277-8
Publishing year	2020
Page numbers	185-212

Title of the chapter	Seaweed biomass and microbial lipids as a source of biofuel.
Authors	S. Agarwal, K. Khatri, M. S. Rathore
Title of the Book	Biotechnology and Biofuel: A sustainable Green Energy Solution
Editor	N. Kumar
Publisher	Springer Nature Switzerland AG
Book identifier number (ISBN, DOI etc.)	ISBN: 978-981-15-3760-8.
Publishing year	2020
Page numbers	135-163

Title of the chapter	Synthetic polymeric membranes for the removal of toxic pollutants and other harmful contaminants from water.
Authors	P. Ray, P. S. Singh, V. Polisetti
Title of the Book	Removal of Toxic Pollutants Through Microbiological and Tertiary Treatment
Editor	M. P. Shah
Publisher	Elsevier
Book identifier number (ISBN, DOI etc.)	ISBN: 9780128210147
Publishing year	2020
Page numbers	43-99

Title of the chapter	Synthetic desalination.	polymer-based	membrane	for	
----------------------	-------------------------	---------------	----------	-----	--

Authors	P. S. Singh, P. Ray, A. F. Ismail		
Synthetic Polymeric Membranes for Adva Water Treatment, Gas Separation, and Er Sustainability.			
Editor	N. Yusof, W. N. W. Salleh, A. F. Ismail		
Publisher	Elsevier		
Book identifier number (ISBN, DOI etc.)	978-0-12-818485-1		
Publishing year	2020		
Page numbers	23-38		

Title of the chapter	Recent advances in the transcriptomics of seaweeds	
Authors	B. Tanna, A. Mishra	
Title of the Book	Encyclopedia of Marine Biotechnology	
Editor	S. Kim	
Publisher	John Wiley & Sons, Inc, Hoboken, NJ, USA	
Book identifier number (ISBN, DOI etc.)	9781119143772	
Publishing year	2020	
Page numbers	1909–1917	

Title of the chapter	Algae biotechnology: Current status, potential and impediments.	
Authors	S. K. Sahu, V. A. Mantri, P. Zheng, N. Yao	
Title of the Book	Encyclopedia of Marine Biotechnology	
Editor	S. Kim	
Publisher	John Wiley & Sons, Inc, Hoboken, NJ, USA	
Book identifier number (ISBN, DOI etc.)	9781119143772	
Publishing year	2020	
Page numbers	1-31	

Title of the chapter	Engineered microbes and evolving plastic		
Authors	bioremediation technology. A. Kumar, D. R. Chaudhary		
Authors			
Title of the Book	Bioremediation of Pollutants: From Genetic Engineering to Genome Engineering		
Editor	V. C. Panday, V. Singh		
Publisher	Elsevier		
Book identifier number (ISBN, DOI	ISBN: 9780128190258		

etc.)	
Publishing year	2020
Page numbers	417-443

Title of the chapter	Furfuryl alcohol-A promising platform chemical.	
Authors	D. K. Mishra, S. Kumar, R. S. Shukla	
Title of the Book	Recent Advances in Development of Platform Chemicals	
Editor	S. Saravanamurugan, H. Li, A. Riisager, A. Pandey	
Publisher	Elsevier	
Book identifier number (ISBN, DOI etc.)	ISBN: 978-0-444-64307-0	
Publishing year	2020	
Page numbers	323-353	

3. स्वीकृत/ दायर पेटेंट [Patents-Granted/ Filed]

भारतीय पेटेंट दायर: (13 पेटेंट आवेदन)

[Indian Patent Filed: (13 Patent Applications)]

SN	Title Inventors		Patent Application Number	
1	Novel silver nano-based aqueous sanitizer against pathogens	Pratihar Sanjay, Pramanik Sumit Kumar, Chaudhuri Susmita, Bhattacharyya Sankar, Yadav Manisha, Kumar Niraj, Mani Shailendra	202011030085	
2	A process for the preparation of solvent-resistant-nanofiltration composite membranes and use thereof	Puyam Sobhindro Singh, Ray Paramita, Subramanian Rangaswamy, Chakkaravarthi Arugakeerthy, Gopika Sree Kumar	202011034405	
3	Seaweed polysaccharide based antimicrobial gel composition	Chatterjee Shruti, Meena Ramavatar, Bhojani Gopal, Singh Ankit	202011036009	
4	Crosslinked coating and interpolymer ultrafiltration membrane with inherent antimicrobial activity and its method of preparation thereof	filtration membrane with inherent chandel Arvind Kumar Singh, Bhojani Gopal,		

		Jaladhi Sanjay Kumar	
5	Compounds for detection of homocysteine and its method of preparation thereof	Chatterjee Pabitra Baran, Debnath Snehasish, Nair Ratish Rajgopalan	202011038506
6	Reusable nonwoven polyester/polycotton/polypropylene fabric based masks as barrier for SARS-COV-2 virus and bacterial species	Saha Nirmal Kumar, Jewrajka Suresh Kumar, Haldar Soumya, Shahi Vinod Kumar, Singh Dhirendra Pratap, Sarkar Kamalesh	202011038718
7	A compound used in a device for the detection of arsenic level in drinking water and its method of preparation thereof	Pasha Sheik Saleem, Tayde Deepak, Banerjee Amrita, Singh Soumendra, Pal Samir Kumar, Pramanik Sumit Kumar, Das Amitava	202011045584
8	Process for the preparation of camostat mesylate intermediates	Sukalyan Bhadra, Subhash Chandra Ghosh, Subbarayappa Adimurthy, Jogendra Kumar, Chiranjit Sen, Deepa Rawat	202011047949
9	Process for bio-degradation of n, n- dimethylformamide and other polar aprotic solvents	Saha Nirmal Kumar, Bhojani Gopal	202011052607
10	Compound for detection of the simulant for sarin and its method of preparation thereof	Pabitra Baran Chatterjee, Snehasish Debnath, Riya Ghosh	202011052605
11	A decentralized multistage constructed wetland system for sewage treatment	Ray Sanak, Haldar Soumya, Chanchpara Amitkumar, Chatterjee Shruti	202111001294
12	A process of selective extraction of pure lac resin from the aqueous effluent	Adimurthy Subbarayappa, Badhani Gaurav	202111001134
13	A process for the production of pure melanin from endophytic actinomycete streptomyces sp. Mtcc 25318	Shinde Pramod Bapurao, Prasad Kamalesh, Ghadge Vishal, Kumar Pankaj	202111002834

भारतीय पेटेंट स्वीकृत: (22 पेटेंट आवेदन) [Indian Patent Granted: (22 Patent Applications)]

SN	Title	Inventors	Patent Application Number
1	An improved fast and selective process for the preparation of gamma-valerolactone by catalytic hydrogenation of levulinic acid using ru-based catalysts	Kannan Srinivasan, Sreedhar Gundekari	337459
2	An eco-friendly process for hydrogenation of organic molecules using hydrous ruthenium oxide catalyst	Kannan Srinivasan, Sreedhar Gundekari	338850
3	A process for the preparation of mefrosol Noor Ul Hasan R Rukhsana Ilyas R Sayed Hasan Ra Hari Chand Baja Saravanan Subra Sekhar Nandi		339521
4	Composite hollow fiber membrane system for water-ethanol separation and process for the preparation thereof	Sobhindro Singh Puyam, Sanjay Gopaldas Chaudhri	341161
5	Improved household solar still for desalination of brackish water, sea water and concentration of juices, coconut water and whey	Subarna Maiti, Pankaj Arvindbhai Patel, Chitangi Bhatt, Jitendra Narsinhbhai Bharadia, Mahesh Ramjibhai Gajjar, Pratap Sashikant Bapat, Pushpito Kumar Ghosh	342767
6	Eco-friendly prepration of octyloctanoate through oxidative homocoupling of octanol using bromide-bromate couple in aqueous acidic medium	Subbarayappa Adimurthy, Narreddula Naresh Kumar Reddy	342875
7	A process for the preparation of epoxides of cyclic and acyclic aryl olefins using recyclable organic promoters	Noor-Ul Hasan Khan, Rukhsana Ilyas Kureshy, Sayed Hasan Razi Abdi, Hari Chand Bajaj, Tamal Roy, Minaxi Samatbhai Maru	343973

8	Integrated process for potash recovery from biomethanated spent wash with concomitant environmental remediation of effluent	Pratyush Maiti, Krishna Kanta Ghara, Soumya Haldar, Neha Pratap Patel, Subarna Maiti, Prasanta Das, Charola Samirkumar Kanjibhai	345444
9	Luminescent lanthanide complexes and its composite films and its method of preparation thereof	Palani Sivagnana Subramanian, Duraikkannu Shanthana Lakshmi, Jashobanta Sahoo, Shobhit Singh Chauhan	349831
10	A process for the preparation of fatty cyclic carbonates by oxidative carboxylation	Kannan Srinivasan, Sayed Hasan Razi Abdi, Sivashunmugam Sankaranarayanan, Saravanan Subramanian	350026
11	Preparation of seaweed polysaccharide based hydrophobic biocompatible ropes	Meena Ramavatar, Ghosh Pushpito Kumar, Chejara Dharmesh, Eswaran Karuppanan, Siddhanta Arup Kumar, Prasad Kamalesh, Chaudhary Jai Prakash	350065
12	Preparation of value added products by cataytic organic transformations of biomass derived levulinic acid with aromatics	Kannan Srinivasan, Sreedhar Gundekari	350735
13	An improved process for the preparation of modified polysulfone hollow fiber membrane of enhanced organic selectivity	Puyam Sobhindro Singh, Kansara Ankit Kumar, Prajapati Pradeep Kumar	351223
14	Preparation of functionalized castor oil derivatives using solid acid and base catalysts	Kannan Srinivasan, Sivashunmugam Sankaranarayanan	351609
15	A process for the preparation of ammonium bicarbonate from effluent	Maheshkumar Ramniklal Gandhi, Jatin Rameshchandra Chunawala, Satish Hariray Mehta, Bansari Umeshbhai Trivedi, Nikunja Gokalbhai Korat	352031
16	Process for extraction and precipitation of potassium chloride	Ganguly Bishwajit, Paul Parimal, Chatterjee	354849

	from aqueous potassium chloride solution using sodium tetraphenyl borate	Pabitra Baran, Patel Tapasya Janakbhai	
17	A novel compound for the detection of adenine and process for preparation thereof	Pramanik Sumit Kumar, Singh Harwinder, Das Amitava	357569
18	Kappaphycus alvarezii sap free of gibberellic acid (ga3) and its method of preparation	Pushpito Kumar Ghosh, Arup Ghosh, Dibyendu Mondal, Kamalesh Prasad, Pradeep Kumar Agarwal, Parinita Agarwal, Sudhakar Tukaramji Zodape, Kattaeri Gopalakrishnan Vijay Anand	358929
19	Preparation of intermediate siderophore aeruginic acid coupled iron nanoparticles and application thereof	Chatterjee Pabitra Baran, Mudhulkar Raju, Nair Ratish Rajgopalan	360307
20	Process for the recovery of copper, iron, Tin and lead from used printed circuit boards using organic acids	Hari Chand Bajaj, Noor- Ul Hasan Khan, Arvinkumar Balvantrai Boricha, Krishnan Muthukumar, Subramanian Natarajan	362487
21	Heterogeneous catalytic process for synthesis of alpha-hexylcinnamaldehyde	Ram Sambhar Shukla, Noor-Ul Hasan Khan, Jacky Haresh Adwani	362501
22	Biodegradable nonisocyanate polyurethane nanocapsules and process for preparation thereof	Pramanik Sumit Kumar, Das Amitava	363201

विदेशी पेटेंट दायर: (4 आविष्कारों से 07 पेटेंट आवेदन) [Foreign Patent filed: (07 Patent Applications from 4 Inventions)]

SN	Title	Inventors	Country	Patent Application Number
	UV shielding bio-derived furanic polymers	Kannan Srinivasan, Rajathsing Kalusulingam, Gajula Sampath,	AU	2019213848
1			SG	11202005110X
		Koilraj Paulmanickam,	EP	19711436.6

		Duraikkannu Shanthana Lakshmi	US	16/960839
2	Fluorinated-aliphatic hydrocarbon based stable anion-exchange membrane and its method of preparation thereof	Shukla Geetanjali, Bhushan Mani, Kumar Sonu, Das Arindam Kumar, Sharma Prerana, Singh Anuj Kumar, Shahi Vinod Kumar, Bhargava Bharat, Parvatalu Damaraju	WO	PCT/IN2020/050552
3	Ultrathin polymer nanofilm composite membrane and a process for preparation thereof	Karan Santanu, Sarkar Pulak, Modak Solagna	WO	PCT/IN 2020/051058
4	Highly selective ultrathin polymer nanofilm composite membrane and process for preparation thereof	Karan Santanu, Sarkar Pulak, Modak Solagna	WO	PCT/IN 2020/051059

विदेशी पेटेंट स्वीकृत: (9 आविष्कारों से 19 पेटेंट आवेदन) [Foreign Patent Granted: (19 Patent Applications from 9 Inventions)]

SN	Title	Inventors	Country	Patent Application Number
	Improved process for the preparation of fatty acid alkyl esters (Biodiesel) from triglyceride oils using eco-friendly solid base catalysts High flux hollow fiber ultrafiltration membranes and process for the preparation thereof	Kannan Srinivasan, Sivashunmugam Sankaranarayana, Churchil Angel Antonyraj	EP	2675879
1			DE	2675879
1			FR	2675879
			ES	2675879
2		Alamuru Venktarami Reddy, Paramita Ray, Puyam Sobhindro Singh, Kallem Parashuram,	BG	2616168
			ЕР	2616168

		Sandipkumar Maurya, Jitendra Jaydevprasad Trivedi	HU	2616168
3	Integrated process for potash recovery from biomethanated spent wash with concomitant environmental remediation of effluent	Pratyush Maiti, Krishna Kanta Ghara, Soumya Haldar, Neha Pratap Patel,	US	10683211
3		Subarna Maiti, Prasanta Das, Charola Samirkumar Kanjibhai	ID	P000072069
		Ramavatar Meena, Naresh	US	10688446
4	Seaweed polysaccharide based superhydrophilic foam membrane for energy-efficient oil-water separation	Dharmashibhai Sanandiya, Jai Prakash Chaudhary, Dibyendu Mondal, Nataraj Sanna Kotrappanavar	GB	2534090
5	A device for collecting water sample to concentrate diversified bacteria from different water depth	Binod Kumar Sweta, Haldar Soumya, Bhattacharya Amit, Manna Paramita	US	10690569
	An improved next generation off-laboratory polymer chip electrode	Divesh Narayan Srivastava, Mosarrat	JР	6779863
6		Perween, Rajeev Gupta, Dilip Bhimjibhai Parmar	GB	2539862
7	Preparation of functionalized castor oil derivatives using solid acid and base catalysts	Kannan Srinivasan, Sivashunmugam Sankaranarayanan	CN	ZL201580039857.7

8	Low fouling thin film composite reverse osmosis membranes with improved chlorine resistance and a process for preparation thereof	Alamuru Venkata Rami Reddy, Saha Nirmal Kumar, Jewrajka Suresh Kumar,	ЕР	2922617
		Jitendra Jaydevprasad Trivedi, Paramita Ray, Nagendra Pathak, Gaurang	ES	2922617
		Shambuprasad Trivedi, Temubha Bhupatsinh Gohil, Rahul Shubhash Patil	PT	2922617
9	An eco-friendly process for hydrogenation of organic molecules using hydrous ruthenium oxide catalyst	Kannan Srinivasan, Sreedhar Gundekari	US	10954185

4. प्रौद्योगिकी हस्तांतरण [Technology Transfer]

SN	अंतरण की तिथि	प्रौद्योगिकी का शीर्षक	
	Date of Transfer	Title of the Technology	
1.	दो अलग-अलग फर्मों को To two different firms 28-07-2020 & 25-01-2021	भूरे शैवाल – सरगासम से "तरल समुद्री शैवाल पादप जैव-उद्दीपक" (एलएसपीबी) तैयार करने की प्रक्रिया। Process for the preparation of "Liquid Seaweed Plant Bio-stimulant" (LSPB) from brown algae – Sargassum.	

लागत प्रभावी तरीके से तरल समुद्री शैवाल पादप जैव-उद्दीपक (एलएसपीबी) के उत्पादन के लिए शून्य तरल निर्वहन प्रक्रिया विकसित की गई है। प्रक्रिया के अंत में शेष समुद्री शैवाल अवशेषों का उपयोग अन्य महत्वपूर्ण उत्पादों जैसे कि एल्जिनेट/ सेल्युलोज या बायोचार के उत्पादन के लिए एकीकृत तरीके से किया गया। यह तकनीक विलायक मुक्त है और एलएसपीबी के उत्पादन के लिए माध्यम के रूप में पानी का उपयोग करती है जो विभिन्न पौधों के सूक्ष्म और मैक्रो पोषक तत्वों के साथ-साथ पौधों के विकास हार्मोन में समृद्ध है। विभिन्न फसलों पर विभिन्न रूपों में एलएसपीबी के क्षेत्र परीक्षणों ने फसल की उपज में पर्याप्त वृद्धि दिखाई।

A zero Liquid Discharge process for the production of liquid seaweed plant biostimulant (LSPB) in a cost-effective manner is developed. At the end of the process remaining seaweed residue is used for the production of other valuable products such as alginate/cellulose or biochar in an integrated manner. This technology is solvent

free and uses water as a medium for the production of LSPB which is rich in various				
plant micro and macro nutrients as well as plant growth hormones. The field trials of				
LSPB on various crops in different forms showed a substantial increase in the crop				
yield.				

2.	जलीय बहिःस्राव से शुद्ध लाख राल के चयनात्मक निष्कर्षण की प्रक्रिया।
	Process of selective extraction of pure lac resin from the
	aqueous effluent.

स्टिक लाख से चपड़ा प्राप्ति की प्रक्रिया के दौरान, स्टिक लाख को खुरच कर गर्म क्षार के घोल से धोया जाता है। इस प्रक्रिया के दौरान, दो उप-उत्पाद लाख डाई और मोम घुलनशील हैं और जलीय बहिः स्नाव (निस्पंदन) में चले जाते हैं। चपड़ा उद्योगों को वाणिज्यिक अनुप्रयोगों के लिए शुद्ध रूप में इन उप-उत्पादों को पुनर्प्राप्त करने के लिए कई कठिनाइयों का सामना करना पड़ता है। ये उद्योग घुले हुए लाख राल की पुनर्प्राप्त के लिए उचित प्रौद्योगिकी की कमी के कारण इस अपशिष्ट को पर्यावरण में फेंक देते हैं। वर्तमान आविष्कार न केवल जलीय प्रवाह से लाख की प्राप्ति के लिए एक किफायती प्रक्रिया है, बल्कि पर्यावरण-प्रदूषण से भी बचता है।

- प्रक्रिया उचित यील्ड के साथ उच्च शुद्धता लाख राल देती है।
- आर्थिक और व्यावसायिक रूप से व्यवहार्य प्रक्रिया।
- लाख राल का आसान पृथक्करण।
- निर्पंदन चरणों के उपयोग को समाप्त करता है।
- प्रक्रिया में विरंजन और श्वेतन एजेंटों की आवश्यकता नहीं होती है।

During the process of recovery of shellac from the stick lac, the stick lac is scraped and washed with a hot alkali solution. During this process, two by-products lac dye and wax are soluble and go into the aqueous effluent (filtrate). Shellac industries face many difficulties to recover these by-products in their pure form for commercial applications. These industries are dumping this effluent into the environment due to the lack of innovative technology to recover the dissolved lac resin. The present invention is not only an economical process for the recovery of lac from the aqueous effluent but also evades the environmental-pollutions.

- Process gives high purity lac resin with reasonable yield.
- Economical and commercially viable process.
- Easy isolation of the lac resin.
- Eliminates the use of filtration steps.

	Process does not require decolorizing and bleaching agents.		
3.	18-11-2020	दुग्धशाला और कुक्कुट पशुओं की उत्पादकता और स्वास्थ्य में सुधार के लिए कप्पाफाइकस अल्वारेज़ी और लाल समुद्री शैवाल-आधारित सूत्रीकरण। Kappaphycus alvarezii and red seaweed-based formulations for improving productivity and health of dairy and poultry animals.	

अनुप्रयोगः

- कुक्कुट और मवेशियों की उत्पादकता में सुधार।
- कुक्कुट पालन और मवेशियों में बेहतर प्रतिरक्षी-प्रतिक्रियात्मकता (सेलुलर मध्यस्थता और एचए टाइटर)।
- कुक्कुट में आंत स्वास्थ्य (सूक्ष्मजीवी और संरचनात्मक)।
- अधिक अंडा उत्पादन और अंडे देने की उम्र में वृद्धि।
- दूध में कैल्शियम और आयरन की मात्रा में वृद्धि।
- कम मीथेन उत्सर्जन और उच्च ऊर्जा उपयोग दक्षता।
- संकर नस्ल के बछड़ों में उच्च दैनिक वृद्धि दर।

मुख्य तकनीकी विशेषताएं

- कम ऊर्जा की आवश्यकता।
- स्वदेश में उपलब्ध कच्चा माल।
- प्रतिस्पर्धी लागत।
- विषाक्तता प्रोफाइल और सक्रिय घटकों की जानकारी।
- जानवरों के लिए रुचिकर।
- पाउडर और मवेशी लिक सहित विभिन्न रूपों में पशुओं के चारे में योज्य के रूप में प्रयुक्त किया जा सकता है।
- मवेशियों और मुर्गी पालन में अच्छे स्वास्थ्य लाभ।
- उच्च उत्पादकता और उत्पाद की गुणवत्ता।
- आगे सुधार की संभावना।

Applications:

- Improve productivity of poultry and cattle.
- Better Immuno-responsiveness (Cellular mediated and HA titer) in poultry and cattle.
- Gut health (microbial & structural) in poultry.
- Higher egg production and enhancement in egg-laying age.
- Higher Calcium and iron content in milk.
- Reduced methane emission and higher energy use efficiency.
- Higher daily growth rate in cross-bred calves.

Salient Technical Features:

- · Low energy requirement.
- · Raw materials are indigenously available.
- Competitive cost.
- Idea of toxicological profile and active constituents.
- Palatable to animals.
- Can be offered as a feed additive to animals in different forms including powder and cattle lick.
- Good health benefits in cattle and poultry.
- Higher productivity and quality of produce.
- Scope of further improvisation.

4.		एल्जिनोफाइट्स से एल्जिनिक अम्ल और इसके व्युत्पन्न के उत्पादन के
	21-10-2020	लिए एक शून्य तरल निर्वहन प्रक्रिया। A zero liquid discharge process for the production of
		alginic acid and its derivatives from alginophytes.

सूखे समुद्री शैवाल के रूप में 25-30% की उपज के साथ किसी भी तरल अपशिष्ट के उत्पादन के बिना सोडियम (Na-Alg) और अमोनियम एिन्जिनेट (NH₄-Alg) के निष्कर्षण के लिए एक नई प्रक्रिया विकसित की गई। सरगासम प्रजातियाँ (स्वार्टज़ी, टेनेरिमम, वाइटी), जो कि भारत के पश्चिमी तट और दक्षिण पूर्वी तट दोनों से एकत्रित एक भूरा समुद्री शैवाल है, का उपयोग उपरोक्त उत्पादों के निष्कर्षण के लिए किया गया। इस प्रकार उत्पादित Na-Alg को प्रोपलीन ग्लाइकोल एिन्जिनेट (PGA Alginate) का उत्पादन करने के लिए व्युत्पित किया गया। पॉलीसेकेराइड और व्युत्पन्न की संरचना की पृष्टि एफटी-आईआर और एनएमआर द्वारा की गई। कमरे के तापमान (30°C) पर Na-Alg

और NH₄-Alg के 2% जलीय घोल की श्यानता 300 से 800 cP के बीच पायी गयी।

A new process is developed for the extraction of sodium (Na-Alg) and ammonium alginate (NH₄-Alg) without producing any liquid effluents with a yield of 25-30% w.r.t dry seaweed. *Sargassum Spp.* (*Swartzii, tenerrimum*, wightii), which is a brown seaweed collected from both the west coast and south east coast of India was used to extract the above products. Na-Alg thus produced was derivatised to produce propylene glycol alginate (PGA Alginate). The structure of the polysaccharides and derivatives was confirmed by FT-IR and NMR. The viscosity of the 2% aqueous solution of Na-Alg and NH₄-Alg at room temperature (30°C) ranges between 300 to 800 cP.

5.	09-06-2020	सोडियम क्लोराइड और सोडियम सल्फेट युक्त सॉल्ट रिफाइनरी/ सॉल्ट वाशरी के वॉश लिकर से सोडियम सल्फेट की प्राप्ति के लिए एक चक्रीय प्रक्रिया।
		A cyclic process of recovery of sodium sulphate from salt refinery/ salt washery wash liquor containing
		sodium chloride and sodium sulfate.

सॉल्ट रिफाइनरी/ सॉल्ट वाशरी की वॉश लिकर में सोडियम क्लोराइड और सोडियम सल्फेट होते हैं। अवांछनीय अशुद्धियों के कारण, यह प्रवाह सीधे निर्वहन के लिए उपयुक्त नहीं है और इसके लिए डाउनस्ट्रीम उपचार/ प्रसंस्करण की आवश्यकता होती है। सीएसआईआर-सीएसएमसीआरआई ने नमक और समुद्री रसायनों के क्षेत्र में अपने ट्रैक रिकॉर्ड के साथ, सोडियम क्लोराइड और सोडियम सल्फेट युक्त नमक रिफाइनरी/ साल्ट वाशरी वॉश लिकर से अच्छी गुणवत्ता वाले सोडियम सल्फेट (ग्लॉबर लवण) प्राप्त करने की प्रक्रिया विकसित की है।

Wash Liquor from Salt Refinery/ Salt Washery contains Sodium Chloride and Sodium Sulphate. Due to undesirable impurities, this effluent is not suitable for direct discharge & requires downstream treatment/ processing. CSIR-CSMCRI, with its track record in the area of salt and marine chemicals, has developed the process to recover good quality sodium sulphate (Glauber's salt) from Salt Refinery/ Salt Washery Wash Liquor containing Sodium Chloride and Sodium Sulphate.

5. A. सम्मेलनों में मौखिक / पोस्टर प्रस्तुति [Oral/ Poster presentation in conferences]

SN	Title of the Presentation	Conference Details	Venue	Authors
	Effects of manual	Virtual	SRMIST,	Bhaumik
1.	interventions in the	International	Chennai in	Sutariya, Ketan
	winding process on the	Conference on	association with	Patel, Santanu

	performance of spiral wound membrane module.	New Strategies in Water Treatment and Desalination	NIOT and nDA(SZ) March, 21-23, 2021	Karan
2.	Design & development of modular indigenous desalination system mounted mobile/ carrier for potable water distribution for sustained emergency response & recovery.	Virtual International Conference on New Strategies in Water Treatment and Desalination	SRMIST, Chennai in association with NIOT and nDA(SZ). March, 21-23, 2021	Sanjay D. Patil, Subarna Maiti, V. K. Shahi, Bhaumik Sutariya, Shaktipalsinh Raijada
3.	Extraction of K ₂ SO ₄ from an aqueous NaCl+K ₂ SO ₄ solution by organic solvent PEG 200.	New Frontiers in Energy and Environmental Sustainability	PDEU, Gandhinagar. Feb, 27-28, 2021	Parul Sahu, Bhavdip Patel
4.	Thin film Polyamide composite membrane- the milestone in water purification.	National Webinar	Alipurduar College, W. Bengal. Aug. 04, 2020	A. Bhattacharya
5.	संसाधनों का समुचित संदोहन: आत्मनिर्भर भारत की तरफ एक मजबूत कदम।	आत्मनिर्भर भारत की उड़ान-विज्ञान एवं तकनीकी का योगदान	इंदिरा गांधी परमाणु अनुसंधान केंद्र एवं सामान्य सेवा संगठन, कल्पाक्कम, तमिलनाडु जनवरी, 11-12, 2021	कान्ति भूषण पाण्डेय
6.	Biochemical Analysis and Mass Profiling of Traditional Medicinal Plants.	National Virtual Conference on Current Trends and Challenges in Plant Biochemistry and Biotechnology	BITS Pilani, K. K. Birla Goa Campus. Nov, 20-21, 2020	Charmi S. Patel, Doddabhimappa R. Gangapur, Parinita Agarwal, Pradeep K. Agarwal
7.	Self-healing supramolecular metallogels	Recent Trends in Materials Chemistry (Webinar)	Santhom Malankara Arts & Science College, Edanji. Aug, 03, 2020	J. Mitra
8.	Green Processes for Clean and Safe Environment: Glimpses of Vizag Gas Leakage	International Science Fiction Conference (virtual mode)	Bangalore University, Karnataka. Dec, 07-09, 2020	S. Adimurthy
9.	Ring opening of pyridotriazoles for the	RTCS-OBC Symposium-	IISER, Kolkata Dec, 26-28, 2020	Deepa Rawat and S.

	synthesis of N- heterocycles	Indian Chemical Society		Adimurthy
10.	Strategic Devising of Hydrolytically Robust and Post-Synthetically Modified Metal-Organic Frameworks for Humid condition Capture and Efficient conversion of CO ₂ to Chemicals	57th Annual Convention of Chemists, 2020 & International Conference on "Recent Trends in Chemical Sciences — Environmental Chemistry 2020	ONGC Energy Centre (R & D), Delhi. Dec, 27- 28, 2020	Manpreet Singh and Subhadip Neogi
11.	A Smarter Approach towards Enviro Strategic Construction of Functionalized MOFs for CO and Ultra-Sensitive Detection of Multifarious Aqueous Pollutants	57th Annual Convention of Chemists, 2020 & International Conference on "Recent Trends in Chemical Sciences Inorganic Chemistry Section	Department of Chemistry, Jadavpur University, Kolkata. Dec, 26- 29, 2020	Ranadip Goswami and Subhadip Neogi
12.	Pore-Functionalized and Ultralight Charged MOF with Color Tunable Emission for Anticounterfeiting Applications via Specific Tb ³⁺ Sensitization	57th Annual Convention of Chemists, 2020 & International Conference on "Recent Trends in Chemical Sciences Inorganic Chemistry Section	Department of Chemistry, Jadavpur University, Kolkata. Dec, 26- 29, 2020	Nilanjan Seal and Subhadip Neogi
13.	Exceptionally Selective Capture and Effectual Fixation of CO ₂ in a Dual-Functionalized Metal-Organic Framework	Indo Canadian Research Conclave on Carbon Capture Sequestration and Utilization	Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar. March, 12-13, 2021	Nilanjan Seal and Subhadip Neogi
14.	Screening of potential seaweed feed stocks for	2nd International Conference on	Department of Biotechnology,	Surabhi Agarwal and Mangal S.

	biofuel production by oleaginous yeasts.	Bioprocess for Sustainable Environment and Energy	NIT Rourkela, Odisha. July, 05- 07, 2020	Rathore
15.	Molecular Cloning of a novel Gene SbRPC5L from an Extreme Halophyte Salicornia brachiata Roxb. and its Genetic Transformation into Tobacco for Functional Validation	International Conference on Panorama of Life Sciences – 2020	Department of Life Sciences, MKS Bhavnagar University, Gujarat, India, Jan, 28, 2021	Anupam Kumari and Mangal S. Rathore
16.	Date Palm (Phoenix dactylifera L.) callus culture- An important horticultural cash crop for arid and semi-arid regions of Gujarat	International Conference on Panorama of Life Sciences – 2020	Department of Life Sciences, MKS Bhavnagar University, Gujarat, Jan, 28, 2021	Prakash Shahrukh A. Siddiqui and Mangal S. Rathore
17.	Superhydrophobic silicalite-1/polydimethysiloxane nanocomposite membranes for bioethanol and biobutanol selective separation	International conference on physical sciences-2021	Sardar Vallabhbhai National Institute of Technology, Surat - 395007 (Virtual). Feb, 05-06, 2021	A. M. Kansara and P S. Singh
18.	Aeluropus lagopoides HKT2; 1 promoter: regulation with ABA and ionic stresses	National Virtual Conference on 'Current Trends and Challenges in Plant Biochemistry and Biotechnology' Organised by Society for Plant Biochemistry and Biotechnology and Biotechnology	Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa. Nov 20-21, 2020	Dave, A., Joshi, P.S., Sanadhya, P., Agarwal, P. and Agarwal, P.K.
19.	Overexpression of JcWRKY2 enhances salinity and Macrophomina phaseolina tolerance in transgenic tobacco	National Virtual Conference on 'Current Trends and Challenges in Plant Biochemistry and	Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa. Nov 20-21, 2020	Dabi, M., Agarwal, P and Agarwal P.K.

		Biotechnology' Organised by Society for Plant Biochemistry and Biotechnology		
20.	SbMYB15 transgenics negatively regulate cadmium and nickel uptake and help in stress tolerance by modulating antioxidative defence system	National Virtual Conference on 'Current Trends and Challenges in Plant Biochemistry and Biotechnology' Organised by Society for Plant Biochemistry and Biotechnology and Biotechnology	Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa. Nov 20-21, 2020	Sapara, K., Khedia, J., Agarwal, P., Gangapur, D.R. and Agarwal, P.K.
21.	Towards valuing water: improving water use efficiency, tolerance to salinity and utilizing seawater, seaweed cultivation" in webinar	National webinar on Valueing Water	Rani Durgavati Vishwavidyalaya, Jabalpur. March, 22, 2021	Arup Ghosh
22.	Rural empowerment and entrepreneurship through seaweeds in India	International Conference on Global Entrepreneurship Trends & Empowerment through Innovation	Amity University Rajasthan. March, 05-06, 2021	Arup Ghosh
23.	Biostimulants from seaweeds for enhancing plant and animal productivity	National Seminar on Chemists at the Sea: Marine Resources for Indian Economy	Dept of Chemistry, Dr Meghnad Saha College, Uttar Dinajpur & Internal Quality Assurance Cell. Dec, 28, 2020	Arup Ghosh
24.	Seaweed sap (biostimulants) for plants and animals	Popular Lecture in Pre-event of 6th India International	CSIR-CSMCRI & Press Information Bureau & ROB	Arup Ghosh

		Science Festival (IISF) 2020	(Govt of India) Dec, 18, 2020	
25.	Response of crop and soil to seaweed biostimulants	E-conference on seaweed cultivation & downstream processing - Challenges and prospects	ICC and CSIR-CSMCRI, Bhavnagar. Aug, 06-07, 2020	Arup Ghosh
26.	Seaweed biostimulants for Climate Change Adaptations in Dryland Agriculture in Semi-Arid Areas	International Conference on Climate Change Adaptations in Dryland Agriculture in Semi-Arid Areas	Centre for Science and Technology of the Non-Aligned and Other Developing Countries. July, 21-23, 2020	Arup Gghosh and K G Vijayanand
27.	Seaweeds biostimulants for enhancing agricultural productivity, improving soil health and mitigating climate change	Role of biostimulant to boost the new normal GDP growth of India	Indian Chamber of Commerce & Biological Agri Solutions of India. June, 29, 2020	Arup Gghosh
28.	Global virtual discussion on Biostimulants from seaweeds in increasing crop production and improving soil health	International Webinar on "Global Virtual Discussion on Global Food Security and Agriculture Practice after COVID -19 Pandemic"	JNKVV College of Agriculture, Tikamgarh, M.P. June, 22, 2020	Arup Ghosh
29.	Effect of liquid extract of Gracilaria salicornia and Sargassum cinctum and their combination on germination of Zea mays	International Conference on Global Entrepreneurship Trends & Empowerment through Innovation	Amity University Rajasthan. Mrach, 05-06, 2021	Divya Vyas, Kinjal Khandhediya, Pradip Vaghela, Grishma Gandhi, M. Ganesan and Arup Ghosh
30.	Introducing a non- hazardous benzyltriethylammonium	Virtual International Conference on	S. V. National Institute of Technology,	Kuldeep Singh, Paidi Murali Krishna,

	chloride-caprylic acid deep eutectic solvent for the cleaning of diatoms.	Chemical Sciences in Sustainable Technology and Development	Surat 395 007, Gujarat, India. Dec, 01-03, 2020	Krishnaiah Damarla, Subir Kumar Mandal, Arvind Kumar
31.	Role of CSMCRI in Salt and its value additive products, Export Potential of Salt and marine chemicals related research and technologies	Popular Lecture in Pre-event of 6th India International Science Festival 2020 related to R & D for Atmanirbhar Bharat	CSIR-CSMCRI & Press Information Bureau & ROB (Govt of India) Dec, 18, 2020	Bhoomi Andharia
32.	Role of Science and Technology in Disaster Management	9th Training Programme on Science and Technology for Rural Societies for Women Scientists & Technologists held during	Conducted by Indian Institute of Public Administration, New Delhi Sponsored by Department of Science and Technology, New Delhi. Jan. 04-08, 2021	Bhoomi Andharia
33.	Indentifying other suitable and potential indigenous carrageenophytes for commercial cultivation in India	7 th International Society for Applied Phycology, Japan	International Society for Applied Phycology, Japan. Feb. 25, 2021	V. Veeragurunathan
34.		First International advanced macro- algae summit	Seakura, Hamelacha 18 St. Poleg Industrial Area, Netanya 4250553, ISRAEL	V. Veeragurunathan

5. B. कार्यशाला, व्यापार मेला आदि में प्रदर्शन [Demonstrations in workshop/trade fair]

SN	SN Title of the Demonstration		Workshop/ fair Details	Venue	Demonstrator
	Effects of	manual	Virtual	SRMIST,	Bhaumik Sutariya, Ketan
1	1. interventions in the Interr		International	Chennai in	Patel, Santanu Karan

	winding process on the performance of spiral wound membrane module	New Strategies in Water Treatment and Desalination. March, 21-23, 2021	association with NIOT and nDA(SZ)	
2.	CSIR-CSMCRI solar thermal gadgets	Virtual INDO AFRICAN Confluence- Solar and Renewable Energy Expo 2021- 1st Edition 28 Feb 2021 to 03 Mar 2021	Indian Chamber of Commerce (Online mode)	Subarna Maiti, Mr. Bhupendra Kumar Markam

6. आमंत्रित वार्ता [Invited Talks]

SN	Title of the Presentation	Title of the seminar/ conference/ symposia/	Venue	Speaker
1.	Brief Introduction of CSIR- CSMCRI and Opportunities for Students	DST Rajasthan STEM Webinar Series. 19, Nov2020	DST Rajasthan (Online)	Dr. Divesh N. Srivastava
2.	Carbon-Polymer Composite Chip as Electrode Platform	Virtual International Conference on Physical Sciences (ICPS-2021) 5-6, Feb2021	S. V. National Institute of Technology, Surat (Online)	Dr. Divesh N. Srivastava
3.	Indian Solar Saltworks: Value addition through R&D	Nature Inspired Trends in Chemical Sciences (NITCS - 2021) 09, Feb2021	Goverment College Patharia, M.P. (Virtual mode)	Dr. Parul Sahu
4.	Membranes coming of age	Invited talk 05,Sept2021	Tata steel, Jamshedpur (Virtual mode)	Dr. Amit Bhattacharya
5.	Membranes- the trend in water purification	Invited talk 10, Oct2020	Regional Science Centre and	Dr. Amit Bhattacharya

			Planetorium, Calicut	
6.	Is science without humanity a sin?	Social Responsibility of Scientists: Pathways and Outcomes 16, Mar2021	National Institute of Advanced Studies, Bangaluru, NIAS- DST	Dr. Saroj Sharma
7.	राजभाषा नीति एवं उसका व्यावहारिक अनुप्रयोग	राजभाषा कार्यशाला 31,Sept2020	एयरपोर्ट अथॉरिटी, भावनगर विमान क्षेत्र, भावनगर	डॉ. कान्ति भूषण पाण्डेय
8.	The many faces of catalysis	National Level Webinar on Sustainable Chemistry 16, Jul2020	Aditanar College of Arts and Science, Thiruchendur, Tamil Nadu	Dr. Saravanan S
9.	Molecules to Materials: Systematic functionalization for CO ₂ Utilization	Faculty Development Programme supported by ATUL, AICTE 4-8, Jan 2021	IIITDM, Chennai, Tamil Nadu	Dr. Saravanan S
10.	Introduction to Microscopy & data analysis	Workshop Series on Software in Chemical Science 18-20, Dec2020	Department of Chemistry, Uka Tarsadia University, Bardoli - 394350, Gujarat (Online)	Dr. Gopala Ram Bhadu
11.	Microalgal biorefinery model for healthcare, energy and environment applications: Proof-of- concept.	Online e-Faculty Development Program cum Workshop on Waste-to- Bioenergy 28, Jun-04 Jul- 2020	Sharda University, and Maharashtra Institute of Technology. (online)	Dr. Dineshkumar R
12.	Self-healing supramolecular metallogels	RTMC 2020: Webinar 03, Aug-2020	Santhom Malankara Arts & Science College, Edanji	Dr. Joyee Mitra
13.	Green Chemistry and its Applications	Webinar, East Point College of Engineering and Technology, Bangalore 22, Jul2020	Department of Basic Sciences, East Point College of Engineering and Technology, Bangalore	Dr. S. Adimurthy
14.	Decentralized Applications	International	NAM S&T Centre	Dr. Subarna

	of Solar Thermal Energy For Livelihood Expansion & Sustainability	Workshop On Renewable Energy And Storage Devices For Sustainable Development (Iwresd 2021) 12-14, Jan2021	& Amity Institute Of Advanced Research And Studies (Materials & Devices)	Maiti
15.	Development of Functionalized Metal- Organic Frameworks (MOFs) for Highly Selective Capture and Efficient Fixation of CO ₂	57th Annual Convention of Chemists, 2020 & International Conference on "Recent Trends in Chemical Sciences – Environmental Chemistry 2020 (RTCS-ENV 2020) 27-28, Dec2020	ONGC Energy Centre (R & D), Delhi	Dr. Subhadip Neogi
16.	Recent Trends of Renewable Energy	Online expert lecture 13, Sept2020	Department of Chemical Engineering, G H Patel College of Engineering & Technology, Vallabh Vidyanagar.	Dr. Subarna Maiti
17.	Oceans as Green Energy Source : various forms energy from Ocean	Oceans as Green Energy Source 27, Mar2021	The Institution of Engineers (India)	Dr. Ketan Patel
18.	Secondary Interactions Invert the Modus Operandi of Schiff Base Formation to Drug Intermediates	Invited Talk 08, Jul-2020	Parul University, Vadoadara	Dr. Ketan Patel
19.	Helicate – A Smart Material For Sensing	Invited talk 30, Oct2020	Department of Chemistry, Central University of Tamilnadu	Dr. P. S. Subramanian
20.	Perspective of seaweed research: Laboratory to industry	Invited talk 22, May-2020	CICECO—Aveiro Institute of Materials, Chemistry Department,	Dr. Kamalesh Prasad

			University of Aveiro, 3810-193 Aveiro, Portugal	
21.	Application of modern analytical tools in the analyses of seaweed based products	National Webinar on "Application of Spectroscopy in Analytical Chemistry 14, Aug2020	P.G. Department of Chemistry, Kokrajhar Govt. College, Kokrajhar, Assam	Dr. Kamalesh Prasad
22.	Possibility of using alternative solvents for the production of seaweed based biomolecules and polymers	E-Conference on Post Covid- Current Scenario of Seaweed Cultivation and Downstream Processing Challenges and Prospects 24, Sept2020	CSMCRI & Indian Chambers of Commerce, Mumbai	Dr. Kamalesh Prasad
23.	Seaweed metabolites and their characterization	Invited talk 12, Oct-2020	Faculty Development Programme on "Natural Products and Resources (Seaweeds and Plants), Sathyabama Institute of Science and Technology, Chennai.	Dr. Kamalesh Prasad
24.	Downstream processing of Indian seaweeds towards their value addition.	Invited talk 14, Oct-2020	Faculty Development Programme on "Natural Products and Resources (Seaweeds and Plants), Sathyabama Institute of Science and Technology, Chennai.	Dr. Kamalesh Prasad
25.	Alternative solvent systems for the extraction, separation and preservation n of biomolecules.	Expert talk 05, Nov-2020	Refresher Course, conducted by Centre for Professional Development in Higher Education	Dr. Kamalesh Prasad

			(CPDHE), UGC- Human Resource Development Centre, University of Delhi	
26.	Uranium extraction from seawater: A paradigm shift in the resource recovery	IEI Technical Webinar Panelist on "Oceans as Green Energy Source" 27, Mar2021	The Institution of Engineers (India), Under the aegis of Chemical Engineering Division	Dr. S Kushwaha
27.	Sustainable Processing of Natural Bio resources with special attention to Seaweed Biomass	Invited talk 29, Jan2021	International Webinar The Science of Nature and Natural Phenomenon, Sage university, Indore	Dr. Kamalesh Prasad
28.	Designing of function led open framework materials	Invited Talk at IUPAC GWB2021 09, Feb2021	Bagat Singh Govt. Post Graduate College, Jaora, Ratlam, Madhya Pradesh	Dr. S Kushwaha
29.	Uranium extraction from deep ocean	Open discussion at Science, Technology and Engineering Online Forum 13, Dec2020	Justi Science, Lab ki Baat	Dr. S Kushwaha
30.	Self-Assembled Vesicles and Their Electronic Properties	Invited Webinar 06, Feb2020	Faculty of Applied Sciences, Parul Institute of Applied Sciences, Parul University, Waghodia, Vadodara, Gujarat, India.	Dr. S Kushwaha
31.	Seaweed Hydrocolloids for Health and cosmetic applications	Invited talk 09, Mar2021	University of Birmingham, UK, Webinar on Food and Formulations	Dr. Kamalesh Prasad
32.	Regulating the ABA- dependent and -independent Signalling for Enhancing Abiotic Stress Tolerance in Plants	Invited talk in National Virtual Conference on 'Current Trends and Challenges in	Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa	Dr. Pradeep K. Agarwal

		Plant Biochemistry and Biotechnology' Organised by Society for Plant Biochemistry and Biotechnology (SPBB) 20-21, Nov2020		
33.	Indigenous technology for the production of valuable seaweed products-Future industrial need	Invited Talk 04, Sept.,-2020	Virtual Mode: Organized by ICC & CSIR-CSMCRI	Dr. Ramavatar Meena
34.	Protecting from Corona: Innovative approaches and solutions	Science communication in the time of covid-19: webinars on citizen science 16, May-2020	Department of Science and technology, Govt. of Gujarat	Dr. Kannan Srinivasan
35.	Biomass to Chemicals and Polymers – Opportunities & Challenges	National Webinar on Emerging Trends in Heterogeneous Catalysis & New Challenges 28, Nov2020	Catalysis Society of India, Baroda Chapter, MS University & Navrachna University	Dr. Kannan Srinivasan
36.	Impact of plastics on marine environment from Gujarat coast, India and their decontamination or chemical recycling	India-Japan international Webinar on "Marine Plastic Pollution Prevention and Management" 16, Feb2021	Embassy of India Tokyo, Ministry of Earth Sciences (MoES) Govt. of India, Ministry of Education, Culture, Sports, Science and Technology (MEXT), Govt. of Japan	Dr. Sumit B. Kamble
37.	Catalysis-Introduction, Aspiration and Implementation	International Webinar, Current trends in catalysis and opportunities in chemical sciences 20, Mar2021	Yashwantrao Chavan Institute Science Satara, India	Dr. Sumit B. Kamble
38.	Decentralized multistage	World	CSIR-CSMCRI,	Dr. Sanak

	constructed wetland for sewage treatment	Environment Day 2020 05, Jun2020	Bhavnagar	Ray
39.	Constructed wetlands for wastewater treatment	National Science Day 2021 03, Mar2021	CSIR-CSMCRI, Bhavnagar	Dr. Sanak Ray
40.	Physicochemical properties of seawater and its measurement techniques	Skill development programme in seaweed cultivation and processing technology (SEA-CPT), 24, Feb2021	CSIR-CSMCRI, Bhavnagar	Dr. Sanak Ray
41.	Expert Lecture on Introduction and Application of Geographical Information system and GPS in real world system and Mapping and digitization using ArcGIS	Training Certificate course on "Soil and Water Analysis" under CSIR-Skill integrated programme 24, Mar2021	MBT Department of CSIR-CSMCRI, Bahvnagar	Dr. Bhoomi Andharia
42.	Research Scope in Civil Engineering and R & D Activities at CSIR- CSMCRI"	Delivered Expert lecture on the occasion of Engineer's day of India on in virtual Webinar organized by Government Engineering College, Bhavnagar to engineering students of Bhavnagar. 15, Sept2020	Virtual Webinar Organized by Government Engineering College, Bhavnagar	Dr. Bhoomi Andharia
43.	Importance of Partnerships: Recent Examples @ CSIR- CSMCRI	Outreach Program AIC- GTU India International Science Festival- 2020	Gujarat Technical University, Ahmedabad (Online mode)	Dr. Kannan Srinivasan

		16 Dec. 2020		
44.	Developing abiotic stress tolerant plants using the stress-responsive transcription factors	Recent trends in the Biotechnology Research - A special webinar series 2021 19 Mar. 2021	Department of Biotechnology, Pondicherry University, Puducherry	Dr. Pradeep K. Agarwal

7. मानव संसाधन विकास [Human Resource Development]

A. स्टाफ सदस्यों द्वारा प्रशिक्षण कार्यक्रमों में भागीदारी

A. [Training Programmes attended by staff members]

SN	Title of the Programme	Organizer	Start Date	Number of Days	Name of the Staff
1.	Role of Technology in Community-Level Disaster Mitigation (for Scientists & Technologists)	LBSNAA, Mussoorie	01.02.2021	5	Dr. Bhaumik Sutariya
2.	Role of Technology in Community-Level Disaster Mitigation (for Scientists & Technologists)	LBSNAA, Mussoorie	01.02.2021	5	Mr. Shaktipalsinh D. Raijada
3.	Induction Programme for Newly Recruited Scientists	CSIR - Human Resource Development Centre	15.02.2021	10	Dr. Parul Sahu
4.	Online Training Programme for Women Scientists on "Social Responsibility of Scientists: Pathways and Outcomes	NIAS-DST	15.03.2021	5	Dr. Saroj Sharma
5.	online 'General Management Programme for Women Scientists'	DST	23.11.2020	10	Dr. Aneesha Singh
6.	Online Training Programme for Women Scientists on "Social Responsibility of Scientists: Pathways and	NIAS-DST	15.03.2021	5	Dr. Aneesha Singh

					1
	Outcomes Science Storytelling and				
7.	Scripting for Public Interest	Vigyan Parasar, New Delhi	30.03.2021	1	Dr. Kanti Bhooshan Pandey
8.	3rd Training Program on Science and Technology for Rural Societies	Indian Institute of Public Administration, New Delhi	07-12-2020	5	Dr. Pratap Bapat
9.	IPR and related issues	CSIR HRDC	09-12-2020	3	Dr. Dineshkumar R
10.	10th Training Program on Science Technology and Emerging Trends in Governance	Indian Institute of Public Administration, New Delhi	08.02.2021	5	Dr. B. Nisar Ahamed
11.	3rd Training Programme On Science and Technology for Rural Societies	Indian Institute of Public Administration New Delhi	07.12.2020	5	Dr. Doddabhimappa R. Gangapur
12.	Online Program on the Emotional Intelligence at Workplace for Women Scientists / Technologists	Centre for Organization Development, sponsored by DST	23.11.2020	5	Dr. Joyee Mitra
13.	Research & Development: Industry 4.0'	CSIR-HRDC	07.10.2020	2	Dr. Doddabhimappa R. Gangapur
14.	Technology Readiness Levels'	CSIR-HRDC	22.06.2020	1	Dr. Doddabhimappa R. Gangapur
15.	International Virtual Training Program on "Generic Drugs	CSIR-IICT Hyderabad	19-11-2020	1	Dr. S. Adimurthy
16.	10th Training Programme on "Science, Technology and Emerging Trends in Governance"	Indian Institute of Public Administration, New Delhi	08-02-2021	5	Dr. Subhadip Neogi
17.	International Virtual	CSIR-IICT Hyderabad, NAM S&T Centre, New Delhi	19.11.2020	1	Dr. S. Bhadra
18.	10th Training Programme on "Science, Technology and	Indian Institute of Public Administration,	08-02-2021	5	Dr. S. Bhadra

	Emerging Trends in Governance"	New Delhi			
19.	Online Programme on the use of Microsoft Team for Effective Team Work	CSIR-HRDC	24.09.2020	1	Dr. S. Kushwaha
20.	online programme on 'Technology Readiness Levels' for the scientists of Chemical Cluster	CSIR-HRDC	22.06.2020	1	Dr. S. Kushwaha
21.	Online Programme on Intellectual Property Rights and Related Issues	CSIR-HRDC	09.12.2020	3	Dr. S. Kushwaha
22.	2-days virtual training programmes for the Technical Committee members	Bureau of Indian Standards	21.01.2021	2	Dr. S. Kushwaha
23.	4 weeks leadership training programme entitled "Advance Techno Management Programme for the Scientists	Administrative Staff College of India, Hyderabad (Sponsered by DST, India)	15-02-2021	28	Dr. Ramavatar Meena
24.	Online programme on Emotional Intelligence at Workplace for Scientists/Technologists	Centre for Organization Development, sponsored by DST	21-09-2020	5	Dr. Sanjay Pratihar
25.	Online Programme on Intellectual Property Rights and Related Issues	CSIR-HRDC	09-12-2020	3	Dr. Sanjay Pratihar
26.	9th Training Programme on Science and Technology for Rural Societies for Women Scientists & Technologists held during January 04-08, 2021	Conducted by Indian Institute of Public Administration, New Delhi Sponsored by Department of Science and Technology, New Delhi.	04-01-2021	5	Dr. Bhoomi Andharia
27.	Flood Risk Management	TEQIP III STTP (online	01-03-2021	6	Dr. Bhoomi Andharia

		platform) organized by CED, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, TEQIP III STTP			
28.	Design for Sewer network based on new guidelines	(online platform) organized by CED, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat,	15-03-2021	5	Dr. Bhoomi Andharia
29.	International Conference on HYDRO 2020	Organized by NIT, Rourkela and Indian Society for Hydraulics, Pune	26-03-2021	3	Dr. Bhoomi Andharia
30	Understanding of coastal ocean processes using remote sensing and numerical modelling	67th IIRS Outreach Programme organized by Indian Institute of Remote Sensing Indian Space Research Organisation Department of Space, Govt. of India Dehradun	21-09-2020	5	Dr. Bhoomi Andharia
31.	RS & GIS Applications	67th IIRS Outreach Programme organized by Indian Institute of Remote Sensing	02-11-2020	15	Dr. Bhoomi Andharia

		Indian Space Research Organisation Department of Space, Govt. of India Dehradun			
32.	Project proposal formulation and research implementation	DST online webinar delivered by by deputy Secretary, DST, GoI.	June, 2020	1	Dr. Bhoomi Andharia
33.	Water and wastewater engineering, Solution and Analysis to COVID - 19	On the Occastion of World Environment Day, Organized e-webnair by CSIR-NEERI, Nagpur.	05-06-2020	1	Dr. Bhoomi Andharia
34.	CII - SALT CONFERENCE	Organized by Confederation of Indian Industry at Courtyard By Marriott, Ahmedabad	31-01-2020	1	Dr. Bhoomi Andharia
35.	Increasing credibility of the consultants through Accrediation	1st Virtual Qaulity Conclave Organized by Qaulity Councile of India (QCI) New Delhi. Partner NABET, NBQP.	17-10-2020	1	Dr. Bhoomi Andharia
36.	Science And Technology For Rural Societies	Indian Institute of Public Administration, New Delhi	07-12.2020	5	Dr. V. Veeragurunathan
37.	Work Life Balance	CSIR-HRDC	22.03.2021	2	Dr. V. Veeragurunathan

B. पीएचडी प्रदान किया गया

B. [PhD Conferred]

SN	Name of the Student	Conferment date	Title of thesis	Name of Supervisor	Name of Co Supervisor	University
1.	Mr. Arunachalam R	15-05-2020	Enantiomeric resolution of metallohelicates and catalytic applications	Dr. P. S. Subramanian		AcSIR
2.	Ms. Sonam Yadav	29-06-2020	Isolation and characterization of the photosynthetic C4 PPDK gene from Suaeda species and its transformation in a model plant	Dr. Avinash Mishra		Bhavnagar University
3.	Mr. Shukla Jigneshkumar Jasvantray	20-06-2020	Physicochemica 1 Studies and Morphology Study of Gypsum in Aqueous Electrolyte Solution:Effect of Organic/ Inorganic additives	Dr. Arvind Kumar		Bhavnagai University
4.	Mr. Sunil Manjibhai Galani	15-07-2020	Synthesis, Characterizatio n and Catalytic activity on Zn and Ce based Nanostructured Materials	Dr. S. C. Ghosh	Dr. A. B. Panda	AcSIR
5.	Mr. S. Kumaresan	06-08-2020	Studies on Smectite synthetic and natural clay modification and application	Dr. Hari C. Bajaj		Charusat University
6.	Ms. N.	12-08-2020	Studies on Ulva	D.		Madurai

	Monisha		spp. From Indian Waters - Cultivation, Chemical and Nutritional Properties	M.Ganesan		Kamraj University
7.	Mr. Prashant Digambar More	08-09-2020	Molecular characterization of geminiviruses infecting Jatropha	Dr. Pradeep K. Agarwal	Dr. Arup Ghosh	AcSIR
8.	Mr. Hardipsinh Arjunsinh Gohil	01-09-2020	Development of methods for precious metal ion detection and isolation from brine	Dr. Alok Ranjan Paital		AcSIR
9.	Ms. Kusum Khatri	08-09-2020	Transcriptome analysis of Kappaphycus alvarezii under different salt concentrations to assess salt tolerance mechanism	Dr. Mangal Singh Rathod	Dr. Sandeep Sharma	AcSIR
10.	Mr. Ansari Amamuddin Akhatarbhai	09-09-2020	Development of chiral catalysts for asymmetric cyanation reaction	Dr. N. H. Khan	Dr. R. I. Kureshy	AcSIR
11.	Mr. Nair Ratish Rajgopalan	21-09-2020	Design and Mechanochemi cal Synthesis of Functional Materials and Their Applications	Dr. Pabitra Baran Chatterjee		AcSIR
12.	Mr. Chinnaraja E.	06-10-2020	Synthesis, Characterizatio n of Metallohelicate s and its Application to	Dr. P. S. Subramanian		AcSIR

			Asymmetric Catalysis			
13.	Mr. Nilesh Giradharbhai Vadodariya	21-10-2020	Prepration of Seaweed polymer based value added Materials	Dr. Ramavatar Meena		AcSIR
14.	Ms. Shristi Ram	21-10-2020	Studies on carotenoid production from bacteria isolated from water bodies across Gujarat	Dr. Sandhya Mishra	Dr. N. H. Khan	AcSIR
15.	Mr. Shibaji Ghosh	21-10-2020	In Silico Studies towards Understanding the Interactions of Small Molecules/Ions with Macromolecula r Systems	Dr. Bishwajit Ganguly		AcSIR
16.	Mr. Vyas Gaurav Ashokkumar	21-10-2020	Development of Functional Materials for Application in Sensing and Removal of Environmentall y Important Ions	Dr. P. Paul	Dr. D. N. Srivastava	AcSIR
17.	Ms. R. Soundarya Patnaik	29-10-2020	Studies on microbial siderophores for enhancement of microalgal growth	Dr. Sandhya Mishra		AcSIR
18.	Mr. Rajesh Kumar Jha	11-11-2020	Cloning and characterization of some drought and salt regulatory protein encoding genes	Dr. Avinash Mishra	Prof. B. Jha	AcSIR

			from Salicornia brachiata			
19.	Ms. Neha P. Patel	12-11-2020	Study the bacterial diversity associated with Indian coral reef ecosystem and their role in coral health	Dr. S. Haldar		AcSIR
20.	Mr. Romil Mehta	03-12-2020	Separation of pesticides from water through low pressure tailor-made membranes	Dr. Amit Bhattacharya		AcSIR
21.	Ms. Ankita Alexander	10-12-2020	Differential expression of some important genes of Arachis hypogaea after inoculation with plant growth promoting rhizobacteria	Dr. Avinash Mishra	Prof. B. Jha	AcSIR
22.	Ms. Bachani Pooja	24-12-2020	Studies on potassium solubilizing bacteria using K-feldspar for its application as plant growth promoter	Dr. Sandhya Mishra	Dr. Pratap Bapat	AcSIR
23.	Mr. Chiranjit Sen	31-12-2020	Regioselective C-C and C- Heteroatom Bond Formation via C-H Bond Functionalizatio	Dr. S. C. Ghosh		AcSIR
24.	Ms. Anupam	21-01-2021	Cloning and	Dr. Mangal	Prof. B. Jha	AcSIR

	Kumari		characterization of novel salt responsive genes, SbRPC5 and SbCPN10 like, from Salicornia brachiata	Singh Rathore		
25.	Mr. Krishnadipti Singha	30-01-2021	Development of Efficient Heterogeneous Photocatalysts for Organic Redox Reactions	Dr. A. B. Panda	Dr. S. C. Ghosh	AcSIR
26.	Mr. Ananta Dey	12-02-2021	Role of Noncovalent Interactions in Proton Coupled Electron Transfer (PCET) and Designing Supramolecular Assemblies	Dr. Amitava Das		AcSIR
27.	Mr. Krishna Velugula	22-02-2021	Design and Development of Terpyridine Based Hybrid Materials for Bio-sensing and Therapeutic Applications	Dr. B. Ganguly	Dr. Jugun Prakash Chinta	AcSIR
28.	Mr. Gaurav Kumar	01-03-2021	Development of Functionalized Porous Frameworks and Chiral Catalysts for Diverse C-C bond formation reaction	Dr. Subhadip Neogi		AcSIR
29.	Mr. Ajay Parmar	10-03-2021	Synthesis of Phthalate Esters over	Dr. Beena Tyagi		AcSIR

			Heterogeneous Catalysts		
30.	Mr. Parmar Dilip Bhimjibhai	24-03-2021	Acquainting Modified Electrodes Towards Sustainabilty of Electrochemical Processes	Dr. Divesh N. Srivastava	AcSIR
31.	Mr. Pradeep Kumar Prajapati	24-03-2021	Preparation and characterization of poly(dimethylsi loxane) hollow fiber membranes for gas separation	Dr. Puyam S. Singh	AcSIR

C. विभिन्न संस्थानों के पाठ्यक्रम के तहत लघु अवधि प्रशिक्षण

C. [Short Term Training under Curriculum of various institutes]

SN	Name of the Student	Degree/streme	Name of Supervisor	University/ Sponcer
1.	Mr. Akshay Gajanan Bhat	M.Sc. (Chemistry)	Dr. Govind Sethia	Manipal University, Jaipur
2.	Ms. Durgesh Nandini Gaur	M.Sc. (Chemistry)	Dr. Govind Sethia	Manipal University, Jaipur
3.	Mr. Mansoor M Dhundhiyawala	M. Sc (Chemistry)	Dr. Ketan R. Patel	Parul Institute of applied Sciences, Parul University
4.	Ms. Toral D Malam	M. Sc (Chemistry)	Dr. Ketan R. Patel	Parul Institute of applied Sciences, Parul University
5.	Mr. Bhargav Jeetmal	M. Sc (Chemistry)	Dr. Shilpi Kushwaha	Parul Institute of applied Sciences, Parul University
6.	Ms. Pooja Prakash	M. Sc (Chemistry)	Dr. Shilpi Kushwaha	Parul Institute of applied Sciences, Parul University
7.	Ms. Priya Pandey	M. Pharmacology	Dr. Shilpi Kushwaha	Babasaheb Bhimrao Ambedkar University, Lucknow
8.	Ms. Anjana Attupuram	M. Sc Biotechnology	Dr. Subir Kumar Mandal	Vellore Institute of Technology, Vellore
9.	Ms. Swarna Iyer	B.Tech(Biotechnol ogy)	Dr. Vaibhav Mantri	Jaipur National University, Jaipur Rajasthan
10.	Ms. Jasmine Rajai	B. Tech(Biotechnolo gy)	Dr. Avinash Mishra	Natubhai V. Patel College, Vallabh Vidhyanagar

11.	Ms. Sanjivani	B. Sc Genetics	Dr. Avinash	Natubhai V. Patel College,
11.	Shah	201223000000000000000000000000000000000	Mishra	Vallabh Vidhyanagar
12.	Mr. Jigar A.	M.Sc.	Dr. Mangal Singh	Veer Narmad South Gujrat
	Sutariya	Biotechnology	Rathore	University, Surat
		M. Sc	D 4 11 11	Kadi sarva
13.	Ms. Gopi satasiya	Microbiology	Dr. Anil Kumar	vishvavidhyalaya
		0,7		university, Gandhinagar
	Ms. Bhargavi	M. Sc		Kadi sarva
14.	Vasava	Microbiology	Dr. R. B. Thorat	vishvavidhyalaya
	1000000			university, Gandhinagar
-	Ms. Alka M	M. Sc	Dr. Sourish	Kadi sarva
15.	Dabhi	Microbiology	Bhattacharya	vishvavidhyalaya
				university, Gandhinagar
16.	Mr. Sourabh	M. Sc Environment	Dr. Shruti	SH College Thevera, Kochi
10.	Pandey	Science	Chatterjee	
	Landa de la constante de la co			Amrita school of
17.	Mr. Avinash Dharam	M. Sc Biotechnology	Dr. Vaibhav Mantri	Biotechnology, Amrita Vish
17.				wa
				Nidyapeetham
	45 700 100	B.	Dr. Moutusi	
18.	Mr. Bhagirath	Tech(Biotechnolo	Manna	School of life Science, Rai
10.	Rakhasiya	gy)	Ividillia	University, Ahmedabad
	Ms. Dhanvanti	M. Sc	Dr. D. R.	Lachoo Memorial College,
19.	Agrawal	Biotechnology	Chaudhary	Jodhpur
				o danpui
20.	Ms. Ayushi	M. Sc	Dr. Dinesh	P. P Savani University
20.	Ukani	Biotechnology	Kumar	1.1 Savam Chryelsty
21.	Ms. Hemanshi	M. Sc	Dr. Dinesh	P. P Savani University
21.	Padariya	Biotechnology	Kumar	1.1 Savam Chryeisty
22.	Mr. Jaydeep	M. Sc	Dr. Moutusi	P. P Savani University
22.	Dobariya	Biotechnology	Manna	1.1 Savam Chrycisty
23.	Mr. Jay	M. Sc	Dr. Mangal Singh	P. P Savani University
25.	Khaptawala	Biotechnology	Rathore	1.1 Savain University
24.	Mr. Avinash	M. Sc	Dr. D. R.	P. P Savani University
24.	Motisariya	Biotechnology	Chaudhary	1.1 Savain Olliversity
25.	Mr. Vivek Diyora	M. Sc	Dr. Avinash	P. P Savani University
25.	The state of the s	Biotechnology	Mishra	1.1 Savain University
26.	Mr. Hardik	M. Sc	Dr. D. R.	P. P Savani University
20.	Kalathiya	Biotechnology	Gangapur	1.1 Savain Olliversity
27	Ms. Jhanvi Vasani	B. Sc	Dr. Monica G.	P. P Savani University
27.	ivis. Juanvi vasani	Biotechnology	Kavle	r. r Savain University
20	Ms. Priyanka	B. Sc	Dr. Parinita	D. D. Cavani Hairansita
28.	Bagle	Biotechnology	Agrawal	P. P Savani University
29.	Ms. Siddhi Shah	B. Sc	Dr. Parinita	P. P Savani University

		Microbiology	Agrawal	
30.	Ms. Devi Palot	B. Sc Biotechnology	Dr. D. R.	P. P Savani University
31.	Ms. Mansi	B. Sc	Gangapur Dr. Monica G.	P. P Savani University
32.	Majithiya Ms. Isha Bhavsar	Biotechnology B. Sc	Kavle Dr. Shruti	P. P Savani University
33.	Mr. Amal R	Microbiology M. Sc Polymer	Chatterjee Dr. Santanu	University of science and
34.	Ms. Jayalakshmi J	Science M. Sc Polymer	Karan Dr. Puyam Singh	Technology-CIPET- Kochi University of science and
35.	Ms. Merin Sara	Science M. Sc Polymer	Dr. Divesh N.	Technology-CIPET- Kochi University of science and
	Mathew	Science M. Sc Polymer	Srivastava Dr. Hitesh	Technology-CIPET- Kochi University of science and
36.	Ms. Neelima J Mr. Seban	Science M. Sc Polymer	Saravaia Dr. Amit	Technology-CIPET- Kochi University of science and
37.	Thomas Mr. Harikrishnan	Science M. Sc Biopolymer	Bhattacharya Dr. Sumit Kumar	Technology-CIPET- Kochi University of science and
38.	N S	Science M. Sc Biopolymer	Pramanik Dr. Suresh Kumar	Technology-CIPET- Kochi University of science and
39.	Mr. Nikhil Das K	Science	Jewrajka	Technology-CIPET- Kochi
40.	Mr. Muhammed Muhsin CK	M. Sc Biopolymer Science	Dr. Rajaram K. Nagrale	University of science and Technology-CIPET- Kochi
41.	Ms. Swetha K S	M. Sc Biopolymer Science	Dr. Saroj Sharma	University of science and Technology-CIPET- Kochi
42.	Ms. Bemitta Thimothy	M. Sc Biopolymer Science	Dr. Uma Chatterjee	University of science and Technology-CIPET- Kochi
43.	Mr. Zeel S. Patel	B. Sc Chemistry	Dr. Kamlesh S. Prasad	P. P Savani University
44.	Ms. Henny Patel	M. Sc Microbiology	Dr. Soumya Haldar	Indrashil University
45.	Ms. Jaswani Bhumika	Msc. Biotechnology	Dr. Aneesha Singh	Lachoo Memorial College, Jodhpur
46.	Ms. Anjali Karanamkote	M. Sc Organic Chemistry	Dr. Nisar Ahemad	School of Life Science, Indrashil University
47.	Ms. Priyanka Gandhi	M. Sc Biotechnology	Dr. Aneesha Singh	Lachoo Memorial College, Jodhpur
48.	Ms. Priyanka Patel	B. Sc Microbiology	Dr. Sandhya Mishra	Ganpat University
49.	Ms. Sidhi Paramar	M. Sc in Botany	Dr. D. R. Chaudhary	Fergusson Collage, Pune
50.	Ms. Jubie Joy Samuel	M. Sc Microbiology	Dr. P. K. Agarwal	Vellore Institute of Technology, Vellore
51.	Ms. Bhavika Mehta	M. Sc Biotechnology	Dr. Dinesh Kumar	Vellore Institute of Technology, Vellore

		M. Sc Biomedical	Dr. Parinita	Vellore Institute of	
52.	Ms. Jaya Jain	Genetics	Agrawal	Technology, Vellore	
53.	Ms.Naushin	M. Sc	Dr. Asish Kumar	Vellore Institute of	
33.	Mansuri	Biotechnology	Parida	Technology, Vellore	
54.	Ms. Purackal	M. Sc	Dr. Vaibhav	Vellore Institute of	
54.	Nima Mathew	Biotechnology	Mantri	Technology, Vellore	
55.	Mr. Pushpmala Kuwer	M. Sc Chemistry	Dr. Anshul Yadav	Institute for Excellence in Higher Education, Bhopal	
56.	Mr. Dixit Bagadiya	M. Sc Organic Chemistry	Dr. S. Adimurthy	RK university, Rajkot	
		B. Tech	Dr. Pramod	School of life Science, Rai	
57.	Mr. Vedant Gaud	(Biotechnology)	Shinde	University, Ahmedabad	
70	Mr. Jaydeep P.	MSc.Organic	Dr. Subhash C.	DV i i D-ilt	
58.	Kapdiya	chemistry	Ghosh	RK university, Rajkot	
50	Mr. Keval	MSc.Organic	D. I. Mir	DVii D-ilt	
59.	Varmora	chemistry	Dr. Joyee Mitra	RK university, Rajkot	
60.	Mr. Aftab A.	M. Sc Organic	Dr. Ramavatar	PV university Paiket	
00.	Mithani	Chemistry	Meena	RK university, Rajkot	
61.	Mr. Prayag Gajera	M. Sc Organic Chemistry	Dr. Govind Sethia	RK university, Rajkot	
62.	Mr. Siddhant	M. Sc	Dr. Shruti	Vellore Institute of	
02.	Dubey	Biotechnology	Chatterjee	Technology, Vellore	
63.	Ms. Anjali	M. Sc Genetic	Dr. P. K. Agarwal	Devi Ahilya	
03.	Chittora	Engineering	Di. T. R. Agai wai	Vishwavidyalaya, Indore	
64.	Ms. Pratibha	M. Sc Chemistry	Dr. Anshul Yadav	Institute for Excellence in	
04.	Yadav	W. Se Chemistry	N. C. L. C.	Higher Education, Bhopal	
65.	Ms. Dhruvisha	M. Sc Botany	Dr. Mangal Singh	Gujrat University,	
00.	Mehata	THE ST BOWNING	Rathore	Bhavnagar	
44	Mr. Soumendu	Mechanical	Dr. Bhupendra K. Markam	Silver Oak College of	
66.	Chatterjee	Engineering		Engineering and	
	J		3,775,577	Technology Ahmedabad,	
	Ma Diagoni	M. Sc	D. A 1. IV	School of Environment and	
67.	Ms. Bhoomi	Enviromental	Dr. Asish Kumar	Sustainable Devlopement	
	Dhami	Science	Parida	Central University,	
		M So		Gandhinagar	
60	Ms. Vishakha	M. Sc Biotechnology	Dr. Parul Sahu	Veer Narmad South Gujrat	
68.	Maharana	Biotechnology	Dr. Parui Sanu	University, Surat	
69.	Ms. Denisha Ajani	M. Sc	Dr. K.G Vijay	DV university Dailest	
09.	ivis. Denisha Ajani	Microbiology	Ananad	RK university, Rajkot	
70.	Mr. Sadev Dang	M. Sc Life	Dr. Ankush V.	Ahmedabad University	
70.	Ivii. Sadev Dailg	Sciences	Biradar	Annicuation University	
71.	Ms. Ankita Vala	M. Sc	Dr. K.G Vijay	RK university, Rajkot	
/1.		Microbiology	Ananad	KK university, Kajkot	
72.	Mr. Vishal Jaish	M. Sc	Dr. Sourish	RK university, Rajkot	

		Microbiology	Bhattacharya	
73.	Mr. Taral Patel	M. Sc Chemistry	Dr. S. Adimurthy	Marwadi University, Rajkot
74.	Mr. Vaibhavkumar M. Ginoya	M. Sc Chemistry	Dr. S. Adimurthy	Marwadi University, Rajkot
75.	Mr. Abhishek Sojitra	M. Sc Chemistry	Dr. Sumit Kumar Pramanik	Marwadi University, Rajkot
76.	Mr. Jenish Parekh	M. Sc Chemistry	Dr. Sanjay Pratihar	Marwadi University, Rajkot
77.	Mr. Prashant Dhanani	M. Sc Chemistry	Dr. Alok Paital	Marwadi University, Rajkot
78.	Mr. Nirav Parmar	M. Sc Chemistry	Dr. S. Saravanan	Marwadi University, Rajkot
79.	Ms. Deepa Barmeda	M. Sc Chemistry	Dr. Santanu Karan	Marwadi University, Rajkot
80.	Mr. Jay Halpara	M. Sc Chemistry	Dr. Nisar Ahemad	Marwadi University, Rajkot
81.	Mr. Amit Chauhan	M. Sc Chemistry	Dr. Ramavatar Meena	Marwadi University, Rajkot
82.	Ms. Anuja Anil Raut	M. Sc Nanotechnology	Dr. Ankush V. Biradar	Maharaja Sayajirao University, Vadodara
83.	Ms. Shreya Shakhreliya	B. Sc Bioscience	Dr. Sandhya Mishra	Indrashil University
84.	Mr. Jevin Karia	B. Sc Bioscience	Dr. Sandhya Mishra	Indrashil University
85.	Ms. Solanki Margi	M. Sc Nanotechnology	Dr. Ketan R. Patel	Maharaja Sayajirao University, Vadodara
86.	Ms. Dhruvi Paneliya	B. Sc Microbiology	Dr. Sanak Ray	HVHP Institute, Kadi, Gandhinagar
87.	Mr. Darshil Sabhadiya	M. Sc Biotechnology	Dr. Subir Kumar Mandal	Veer Narmad South Gujrat University, Surat
88.	Mr. Mahendra Limbola	M. Sc Nanotechnology	Dr. Shilpi Kushwaha	Maharaja Sayajirao University, Vadodara
89.	Ms. A Princy	M. Sc Chemistry	Dr. K. Eswaran	Department of chemistry, Fatima College, Madurai
90.	Ms. Pooja Patel	M. Sc Nanotechnology	Dr. Amit Bhattacharya	Maharaja Sayajirao University, Vadodara
91.	Mr. Sangeeth T J	M. Sc Hydrochemistry	Dr. Alok Paital	Cochin University of science and technology kerala
92.	Ms. Hasna AT	M. Sc Hydrochemistry	Dr. S. Saravanan	Cochin University of science and technology kerala
93.	Ms. Nabeela V P	M. Sc	Dr. Nisar Ahemad	Cochin University of

		Hydrochemistry		science and technology kerala
94.	Ms. Athira KM	M. Sc Hydrochemistry	Dr. Amal Kumar Mandal	Cochin University of science and technology kerala
95.	Ms. Emilin David	M. Sc Hydrochemistry	Dr. Sanjay Pratihar	Cochin University of science and technology kerala
96.	Ms. Anjali C K	M. Sc Hydrochemistry	Dr. Subhadip Neogi	Cochin University of science and technology kerala
97.	Mr. Bhautik Chovatiya	Analytical Chemistry	Dr. Sumit Kamble	Uka Tarsadia University, Bardoli, Surat
98.	Anjali Soni	Chemical Sciences	Dr. Parul Sahu	KARYA, Govt. of Rajasthan
99.	Kumari Vishakha Sharma	Chemical Sciences	Dr. Pramod B. Shinde	KARYA, Govt. of Rajasthan
100.	Bal Bihari Soni	Chemical Sciences	Dr. Sumit Kumar Pramanik	KARYA, Govt. of Rajasthan
101.	Kirti Thanvi	Chemical Sciences	Dr. Saroj Sharma	KARYA, Govt. of Rajasthan
102.	Priya Ghunawat	Chemical Sciences	Dr. Ankush V. Biradar	KARYA, Govt. of Rajasthan
103.	Rushkar Bano	Chemical Sciences	Dr. Sukalyan Bhadra	KARYA, Govt. of Rajasthan
104.	Farheen Rehman	Chemical Sciences	Dr. Govind Sethia	KARYA, Govt. of Rajasthan
105.	Uma Sawarkar	Chemical Sciences	Dr. Saravanan S	KARYA, Govt. of Rajasthan
106.	Ankit Gupta	Chemical Sciences	Dr. Sumit B. Kamble	KARYA, Govt. of Rajasthan
107.	Deepika Poonia	Chemical Sciences	Dr. Amit Bhattacharya	KARYA, Govt. of Rajasthan
108.	Divya Kumari	Chemical Sciences	Dr. Bhoomi R. Andharia	KARYA, Govt. of Rajasthan
109.	Krati Sharma	Chemical Sciences	Dr. B. Nisar Ahamed	KARYA, Govt. of Rajasthan
110.	Rekha Meena	Chemical Sciences	Mr. Bhaumik Sutariya	KARYA, Govt. of Rajasthan
111.	Chennama Nagar	Life Science	Dr. Doongar Ram Chaudhary	KARYA, Govt. of Rajasthan
112.	Gayatri Kharadi	Life Science	Dr. Subir Kumar Mandal	KARYA, Govt. of Rajasthan
113.	Gunjan Soni	Life Science	Dr. Monica G. Kavale	KARYA, Govt. of Rajasthan

114.	Priyanka Bhandari	Life Science	Dr. D. R Gangapur	KARYA, Govt. of Rajasthan
115.	Priyanka Shanna	Life Science	U I	KARYA, Govt. of Rajasthan
116.	Dristi Kataria	Life Science	Dr. Kanti Bhooshan Pandey	KARYA, Govt. of Rajasthan
117.	Bhanu Priya Rathore	Life Science	Dr. Monica G. Kavale	KARYA, Govt. of Rajasthan

D. कौशल विकास पहल

D. [Skill Development Initiatives]

Program Title	Seaweed	Seaweed Cultivation and Processing Technology Dr. Vaibhav A. Mantri & Dr. K. Eswaran			
Convenor	Dr. Vaibl				
Start Date		No. of Days	No. of participants		
24/02/2021		3	30		
08/03/2021		3	42		
17/03/2021		3	25		

Program Title	Chemical	Chemical Process Plants			
Convenor	Dr. Pratar	S. Bapat			
Start Date	9	No. of Days	No. of participants		
01/02/2021		04	09		

Program Title	Solar Salt production process and quality control aspects			
Convenor	Dr. Alok R. Paital			
Start Date		No. of Days	No. of participants	
04/03/2021		03	30	

Program Title	S Micro algal diversity and their biotechnological potentials			
Convenor	Dr. Subir Kumar Mandal			
Start Date		No. of Days	No. of participants	
09/03/2021		04	25	

Program Title	Soil & Wa	Soil & Water Testing			
Convenor	venor Dr. Doongar R. Chaudhary				
Start Date	ate No. of Days		No. of participants		
01-03-2021		30	05		

Program Title	Fermentation	nentation Technology		
Convenor	Dr. Sourish Bhattacharya			
Start Date		No. of Days	No. of participants	
01-02-2021		04	04	
22-03-2021		04	15	

Program Title	Theory ar	Theory and practical aspects of household solar thermal gadgets Dr. Subarna Maiti			
Convenor	Dr. Subar				
Start Date		No. of Days	No. of participants		
01-02-2021		04	35		

Program Title	Plant Tissue Culture and Gene Technology			
Convenor	Dr. Ma	Dr. Mangal S. Rathore & Dr. Avinash Mishra		
Start Date		No. of Days	No. of participants	
15-03-2021		04	09	

Program Title	Apprentice	e/ Intern	
Convenor	Mr. K.S. Z	Cala	
Start Date		No. of Days	No. of participants
01-04-2020		One year	31

8. पुरस्कार और सम्मान [Awards and Honors]

SN	Awards and recognition	Recognizing Oraganization/ Society	Awardee(s)
1.	India Institute Fellowship	University of Birmingham	Dr. A. Bhattacharya
2.	Top 2% scientists in the world	Marked by Stanford University	Dr. A. Bhattacharya
3.	10th National Award for Technology Innovation" in the category of "Innovations in Polymeric Materials, as a part of the activity in UHMWPE along with six other collegues.	Ministry of Chemical and Fertilizers; Departments of Chemicals and Petrochemicals	Dr. Ketan Patel
4.	DBT Award for product development and comercialization (Core team member)	Department of Biotechnology	Dr Kamalesh Prasad
5.	DBT Award for product development and comercialization (Team Leader)comercialization (Team Leader)	Department of Biotechnology	Dr Ramavatar Meena

9. पेशेवर निकायों की सदस्यता [Membership of Professional Bodies]

SN	Awards/ recognition	Awardee	Name of the Committee/ Society	Date of Award
1.	Selected Member	Dr. Kanti Bhooshan	Indian National	01.01.2021

		Pandey	Young Academy of Sciences (INYAS), governed by INSA, New Delhi	
2.	Co-convenor, Ahmedabad Local Chapter, CRSI	Dr. Saravanan S	Chemical Research Society of India (CRSI)	26.08-2020
3.	Fellow of Royal Society of Chemistry- FRSC	Dr Ramavatar Meena	Royal Society of Chemistry	17.07.2020

10. विदेश में प्रतिनियुक्ति [Deputation Abroad]

SN	Name		Du	ration	Purp	oose/ Fellowship/ Funding	Country Visited
Staff	Member:						
1.	Dr. Amit Bhatta	icharya		2-2020 to 05.2020	I	ndia Institute Fellowship programme	University of Birmingham, UK
Stude	ents:			,			
SN.	Name		ne of rvisor	Durati	on	Purpose/ Fellowship/ Funding	Country Visited
1.	Mr. Dixit V. Bhalani	Dr. Sur Kumar Jewrajk		21-12-202 28-02-202		Newton Bhabha PhD Placement Program	UK
2.	Mr. Jaykumar M. Patel	Dr. Avi Mishra	nash	06-12-202 28-02-202		Newton Bhabha PhD Placement Program	UK

11. प्रतिष्ठित आगंतुक और व्याख्यान [Distinguished Visitors & Lectures]

SN	Date and Occasion	Name & Designation	Affiliation	Address
1.	National Webinar On Heterogeneous Catalysis; 29 June 2020	Dr. R. V. Jasra; Senior Vice President	Reliance Industries Ltd., Vadodara	
2.	National Webinar On Heterogeneous Catalysis; 29 June 2020	Dr. Manish Mishra, Associate Professor	Sardar Patel University, Vallabh Vidyanagar	
3.	National Webinar On Heterogeneous Catalysis; 29 June 2020	Dr. Beena Tyagi, Senior Principal Scientist	CSIR-CSMCRI Bhavnagar	
4.	हिन्दी दिवस	प्रो. अनुराग अग्रवाल,	सीएसआईआर-	कोविड-19 विज्ञान से

	14 सितम्बर 2020	निदेशक,	जीनोमिक और समवेत जीव विज्ञान संस्थान, नई दिल्ली	समाधान
5.	Curtain Raiser event of India International Science Festival (IISF- 2020); 08, December 2020.	Dr Anil K. Gupta, Visiting Professor	Indian Institute of Management, Ahmedabad	Keynote address and popular science lecture
6.	Curtain Raiser event of India International Science Festival (IISF- 2020); 08, December 2020.	Prof. Pankaj S. Joshi, Provost	Charotar University of Science and Technology, Changa	Special address
7.	Curtain Raiser event of India International Science Festival (IISF- 2020); 08, December 2020.	Dr. T. S. Joshi, Director	Gujarat Council of Education Research and Training	
8.	Curtain Raiser event of India International Science Festival (IISF- 2020); 08, December 2020.	Dr Vidyadhar Vaidya	VIBHA (Vigyan Gurjari)	
9.	Pre-event (Lecture Series) of India International Science Festival (IISF-2020); 18, December 2020	Dr. Shekhar C. Mande, DG, CSIR & Secretary, DSIR	CSIR	Keynote Lecture: Biological Sciences
10.	Pre-event (Lecture Series) of India International Science Festival (IISF-2020); 18, December 2020	Dr. Somak Raychaudhury Director	The Inter- University Centre for Astronomy and Astrophysics, Pune	Keynote Lecture: Astronomical Sciences
11.	Pre-event (Lecture Series) of India International Science Festival (IISF-2020); 18, December 2020	Prof. Gadadhar Misra	Indian Institute of Science, Bangalore	Keynote Lecture: Mathematical Sciences
12.	Pre-event (Atmanirbhar Bharat) of India International Science Festival (IISF-2020); 18, December 2020	Dr. Dheeraj Kakadiya, ADG,	Press Information Bureau & ROB, Gujarat	
13.	Pre-event (Creativity in Science) of India	Mr. Vishal Muliya	Teacher & Science Communicator,	Science-toons (Science through

	International Science Festival (IISF-2020); 18, December 2020		Jamnagar	Cartoons)
14.	Pre-event (Creativity in Science) of India International Science Festival (IISF-2020); 18, December 2020	Dr. Manish Jain	Centre for Creative Learning, IIT Gandhinagar	Virtual lab
15.	राष्ट्रीय विज्ञान दिवस 23 फरवरी 2021	डॉ. डी डी ओझा, पूर्व वैज्ञानिक एवं पूर्व सदस्य संयुक्त हिन्दी सलाहकार समिति	जैव प्रौद्योगिकी विभाग एवं पृथ्वी विज्ञान मंत्रालय, भारत सरकार	मोबाइल फोन-स्वास्थ्य के खतरे का अलार्म
16.	66 th Foundation day Celebrations of CSIR- CSMCRI	Prof. Kiran Kalia Director	National Institutes of Pharmaceutical Education and Research, Ahmedabad	Role of Science in the Progress of Nation
17.	Women's Day Celebrations 2021	Prof. Sirimavo Nair, Professor	Department of Food & Nutrition, M.S. University, Vadodara	Interface of Scientific Translations as Cost-effective Intervention- to address Poshan Abhiyan
18.	Women's Day Celebrations 2021	Prof. Ritu Sharma,	Pandit Deendayal Petroleum University, Gandhinagar	

12. जन-शक्ति सारांश [Manpower Summary]

Category	Group	Person on Roll as on 01-04-2020	Person on Roll as on 31-03-2021
	Regular	Manpower	
Scientists	Group IV	87	86
	Group III	28	27
Technical	Group II	50	49
	Group I	08	07
	Total Technical	86	83
Non-Technical			
100	Group A	04	04
	Group B	15	14
	Group C	22	20
	Group D	00	00

	Total Non-Technical	41	38
Total I	Regular Manpower (A)	214	207
	Fellows/ Ad-hoc/ P	Project Staffs	
	Scientist Fellow (QHS)	00	00
	DST INSPIRE Faculty	00	00
	Project Advisor	00	00
1	Emeritus Scientist	03	03
	Woman Scientist	01	01
	CSIR-TWAS Fellow	01	02
	Senior Research Associate (CSIR Pool)	01	01
	CSIR Nehru PDF	00	00
	DST Young Scientist	01	00
	Research Associate (CSIR)	06	06
	Research Associate (Project)	01	03
	Senior Research Fellow (CSIR/UGC NET)	39	36
	Senior Research Fellow (DST/DBT/ BANRF)	09	08
- 1	Senior Research Fellow (Project)	01	02
	Junior Research Fellow (CSIR/UGC NET)	31	33
	Junior Research Fellow (DST/DBT/ BANRF)	05	06
	Junior Research Fellow (Project)	16	09
	Project Associate	00	00
	Technical Assistant (Project)	00	00
	Project Assistant III, II, I	26	85
	Assistant Engineer	00	00
	Project Technician	00	00
	Shift Incharge	00	00
	Electrician	00	00
	Plant Supervisor	00	00
	Data Entry Opertor	00	00
	Technical Consultant	00	00
	Summer Research Fellow	00	00

Executive Assistant (AcSIR)	01	01
Apprentice	31	31
Total Temporary Manpower (B)	173	227
Total Manpower (A+B)	387	434

13. नियुक्तियां [Appointments]

SN	Name	Designation	Date of Joining CSIR- CSMCRI, Bhavnagar	Remarks
1.	Dr. Mrinmoy Mondal	Scientist	15.06.2020	-

14. सेवानिवृत्ति/ स्वैच्छिक सेवानिवृत्ति/ स्थानांतरण/ पदच्युति/ त्यागपत्र [Superannuation/ Voluntary retirement/ Transfer/ Dismissal/ Resignation]

SN		Name	Designation	Date of Retirement/ Relief	Remarks
1.	9	Mr. D R Parmar	Senior Technician (2)	31.05.2020	Retirement
2.		Dr. Beena Tyagi	Senior Principal Scientist	30.06.2020	Retirement
3.		Mr. Atul J Vaghela	Lab Assistant	18.05.2020	Death
4.		Mr. T B Gohil	Senior Technician (2)	31.07.2020	Retirement

5.	8	Dr. C H Ravi Prakash	Senior Technical Officer (3)	31.10.2020	Retirement
6.		Mr. Mayank S Roongta	Senior Technical Officer (1)	29.10.2020	Transferred to CSIR Hqrs
7.		Dr. Asit Baran Panda	Principal Scientist	22.01.2021	Transferred to CSIR-NML, Jamshedpur
8.		Mrs. I D Baraiya	Safaiwala	31.01.2021	Retirement
9.		Mr. Vinod B Solanki	Assistant Manager- Cum-Cook	28.02.2021	Retirement
10.		Mr. Rakeshkumar M Patel	Senior Secretariat Assistant	31.03.2021	Technical Resignation

15. स्मृति-शेष [Always in Memories]

संस्थान के निदेशक एवं कर्मचारी अपने सहकर्मियों के दुखद निधन पर गहरा शोक व्यक्त करते है। The Director and the staffs of the institute deeply mourn the sad demise of their colleagues.

SN	Name	Designation at the time of Retirement	Birth-Death
1.	Mr. K J Anjara	Tech. Gr. II	09/1945 - 06/2020
2.	Mrs. M R Mehta	Receptionist	09/1954- 07/2020
3.	Mr. K R Gody	Tech Gr. II(3)	09/1948 - 06/2020
4.	Dr. M R Oza	Scientist	07/1938 - 04/2020
5.	Mr. Bhaskar K Dave	Jr. Security Guard	10/1948 - 01/2021
6.	Mr. Gova Mala	Safaiwala	11/1941 - 09/2020

7.	Mr. SMN Jainulabdeen	Tech. Gr.II	12/1944 - 08/2020
8.	Mr. B R Odhalia	Technician	02/1932 - 09/2020
9.	Mr. Atul J Vaghela	Lab Assistant	02/1962 - 05/2020

16. अंतरसंस्था संबंध [Interagency Linkages]

SN	Project No.	Project Title	Funding Agency	Name of PI	Amount received in 2020-21 (₹)
Gra	nt-in-Aid	Projects			
1.	GAP- 2134	membranes into the	& Collaborative Institute M-s Ketav Consultant Dehgam, Dist –	Dr. Hiren Raval	1,00,65,200/-
2.	GAP- 2133	Seed plants producation for promoting extensive cultivation of Kappaphycus alvarezii along Tamil Nadu coast.	Fisheries, New	Dr. S. Thiruppathi	53,18,500/-
3.	GAP- 2132	Studies on R-phycoerythrin content in various red seaweeds available in the west and south east coast of India with an eye to develop a sustainable method to extract the pigment following a bio-refinery route.	SERB - New Delhi	Dr. Kamlesh Prasad	9,63,733/-
4.	GAP- 2130	Development and demonstration of separation and recovery of chemicals from byproduct ammonium nitrate solution.	BRNS - Mumbai	Dr. V. K. Shahi	17,62,900/-
5.	GAP- 2129	Development of membranes and copoymer with inherent antimicrobial and antifouling properties for	BRNS - Mumbai	Dr. Suresh Jewrajka	14,62,650/-

		water purification.			
6.	GAP- 2128	Development of heterogeneous catalysis for indirect CO ₂ hydrogenation into renewable CH ₃ OH in a continuous cascade process.		Dr. Lakshya Konwar	19,05,000/-
7.	GAP- 2127	Development of point-of- care assays for early detection of lifecycle disease linked biothiols and biogenic amine.	SERB - New Delhi	Dr. Pabitra Chatterjee	13,68,345/-
8.	GAP- 2126	Magnetically retrievable polyoxometalate ionic salts for microplastic extraction and platics chemical recycling.		Dr. Sumit B. Kamble	23,37,155/-
9.	GAP- 2125	Soil microbial processes and mechanism of greenhouse gas emission (CH ₄) under various vegetations from intertidal zone of coastal area.		Dr. D. R. Chaudhari	9,28,353/-
10.	GAP- 2124	Improving the quality and yield of salt produced by the marginal agarias of (Halwad Region) through scientific intervention and improving their income through value addition of bitterns, halophyte plantation and potable water recovery.	DST - New Delhi (Joint Project	Dr. Arvind Kumar	20,46,294/-
11.	GAP- 2123	Development of low pressure driven reverse osmosis membranes to counter fluoride problem in water: laboratory scale study for field application.	Gandhinagar	Dr. Amit Bhattacharya	8,99,820/-
12.	GAP- 2122	Development of particulate organic carbon (POC) algorithm in the		Dr. S. Haldar	5,00,000/-

		water of Bay of Bengal and Arabian Sea.	Ahmedabad		
13.	GAP- 2121	Long term monitoring of coastal water to understand pollution and impact on coastal health.	ESSO – Indian National Centre for Ocean (INCOIS) - Hyderabad	Dr. S. Haldar	19,32,750/-
14.	GAP- 2118	Charged copolymer conetwork membranes for waste water treatment and different electrochemical separation application	SERB - New Delhi	Dr. Uma Chatterjee	5,00,000/-
15.	GAP- 2115	Electro spun solvent sintered anion exchange membrane for acid recovery from industrial effluents	- New	Dr. R. K. Nagarale	5,00,000/-
16.	GAP- 2112	TARE Fellowship Project: Exploration of MOF as an efficient heterogeneous catalyst for chemical fixation of CO2 to Value added Chemicals	SERB - New	Mr Abhishek N. Dandhania/ Dr. E. Suresh (Retired) Dr. Divesh N. Srivastava (Officiating)	3,35,000/-
17.	GAP- 2109	Development of transition metal based porous hollow structures for superior energy conversation and storage applications.	BRNS - Mumbai	Dr. Asit Panda	3,80,093/-
18.	GAP- 2104	Indigenous polymer electrolyte membranes for energy devices: redox flow battery and reverse electrodialysis	- New	Dr. R. K. Nagarale	14,00,000/-
19.	GAP- 2100	Mass seedling producation of Kappaphycus alvarezii through tissue culture technique and supply of tissue cultured seedlings to the farmers of Tamil Nadu coast		Dr. M. Ganesan	52,08,000/-
20.	GAP- 2098		Biotechnology Industry	Dr. Amitava Das/ Dr. Sumit	1,60,000/-

		clinical use	Research Assistance Council (BIRAC)	Pramanik	
21.	GAP- 2097	Mitigation of salinity stress in Sesamum indicum L. using a novel ABA-dependent SbMYB44 transcription factor from halophyte Salicornia brachiata	SERB - New Delhi	Dr. Pradip K. Agarwal	2,00,000/-
22.	GAP- 2096	Discovery of bioactive therapeutics from microorganisms associated with untapped marine bio-resources	SERB - New Delhi	Dr. Pramod Shinde/ Dr. Yedukondalu Nalli	9,00,000/-
23.	GAP- 2095	Identification of elite germ plasm and development of molecular markers in Gracilaria dura	SERB - New Delhi	Dr. Santlal Jaiswar	6,00,000/-
24.	GAP- 2093	New Ion-conducating hybrid membranes for electromembrane processes and energy applications.	[Indo-Russian joint project] DST - New Delhi	Dr. Vaibhav Kulshreshtra	3,98,482/-
25.	GAP- 2091	Molecular and functional characterization of AIRab7 and its interacting target protein from a salt secreting halophyte Aeluropus lagopoides for modulating stress signalling (WOS-A Project)	DST - New Delhi	Dr. Parinita Agrawal	8,50,000/-
26.	GAP- 2089	Development of low cost device for measurement of cysteine in human blood plasma.		Dr. Shobhit S. Chauhan	9,40,000/-
27.	GAP- 2087	Synthesis and characterization of	UGC-DAE CSR, Indore	Dr. Vaibhav Kulshreshtra	3,10,846/-
28.	GAP-		National	Dr. M. Ganesan	9,27,000/-

	2085	development for commercial farming of Gracillaria dura	Development Board - Hyderabad		
29.	GAP- 2083	Studies on the current seaweed diversity and their ecology in islands of Gulf of Mannar Biosphere Reserve	GOMBRT,	Dr. V. Veeragurunathan	1,75,000/-
30.	GAP- 2082	Electroosmotic Pump Based Insulin Pump for Diabetes Management		Dr. Rajaram K. Nagarale	11,00,000/-
31.	GAP- 2072	Molecular separation membranes via controlled moulding of polymer nanofilms at the liquid- liquid interface.	SERB - New Delhi	Dr. Santanu Karan	15,00,000/-
32.	GAP- 2071	Designing Fluorescence- based molecular sensors for military and commercial explosives	(DKDO), (FR&IPR)	Dr. B. Ganguly	9,97,205/-
33.	GAP- 2068	Heteroatoms induced functionality of seaweed-polysaccharides for potential applications.		Dr. Ramavatar Meena	6,00,000/-
34.	GAP- 2065	Ionic liquids and deep eutectic solvents based colloidal formulations: Applications towards light harvesting and gas adsorption/storage	SERB - New Delhi	Dr. Arvind Kumar	5,50,000/-
35.	GAP- 2063	Multifunctional catalysts based on silica and carbon for enhanced applications.	SERB - New Delhi	Dr. Ankush Biradar	4,00,000/-
36.	GAP- 2060	Design development and demonstration of solar dryer suitable for drying natural rubber sheets in North East India.	& Renewable	Dr. Subarna Maiti	2,50,000/-
37.	GAP- 2059		SERB - New Delhi	Dr. S. Haldar	50,000/-

38.	GAP- 2057	Studies on macrolide antibiotics: Application of genetic approaches for drug discovery		Dr. Pramod Shinde	5,00,000/-
39.	GAP- 2054	Directing- Group- Assisted C (sp ³)-H	SERB - New Delhi	Dr. Subhash C. Ghosh	8,00,000/-
Con	sultancy	Projects			
1.	CNP- 1429	Pre-feasibility study for propoed identified site of 4,400 ha area of Tal. Khambhat, Dist - Anand for development of solar salt works for salt manufacturing	Gujarat Alkalies & Chemicals Limited (GACL) - Vadodara	Dr. Arvind Kumar	2,70,274/-
2.	CNP- 1427	Expert Analysis and necessary technical inputs to increase salt yield at salt works of TNSC operating in the Vallinokkam Village of Ramanathapuran District of TN	Tamil Nadu Salt Corporation Ltd - Chennai	Dr. Arvind Kumar	6,98,500/-
3.	CNP- 1426	Marine environmental for proposed LNG terminal at Hazira, Gujarat	M/s Kadam Environmental Consultants, Vadodara	Dr. S. Haldar	2,12,400/-
Tec	hnical Se	rvice Projects			
1.	TSP- 1426	Rapid EIA for proposed expansion of jetty at Salaya Gujarat by Essar.	M/s Kadam Environmental Consultat, Vadodara	Dr. Soumya Haldar	11,65,368/-
2.	TSP- 1425	producing 12-15 LPH capacity ultrapure water (18.2MΩ cm) at IIT	IIT Roorkee, Saharanpur Campus, Saharanpur (Uttar Pradesh)	Dr. V. K. Shahi	1,74,674/-
3.	TSP- 1424	Identification of pollutant, source of pollution and degree of contamination	Industries Pvt.	Dr. Soumya Haldar	24,78,000/-

		Khambhat area.	Intermediates Ltd (3) Prism Industries Limited, Khambahat (Gujarat)		
4.	TSP- 1423	Establishment of on-shore seed bank facility for seaweed Kappaphycus alvarezii and supply of quality seedlings to the seaweed farmers for sustainable aquaculture.	Ltd- Manamadurai - Siyaganga Dt	Dr. M. Ganesan	11,22,388/-
5.	TSP- 1422	Marine environmental monitoring & impact assessment studies in connection with effuent disposal in Gulf of Khambhat.	Enviro Technologies Pyt Ltd Piplod	Dr. Anil Kumar M.	11,96,520/-
6.	TSP- 1421	maintenance (for one	Shree Somnath Sanskrit University, Veraval (Gujarat)	Dr. V. K. Shahi	14,98,600/-
7.	TSP- 1420	Science behind action of Sargassum seaweed based plant biostimulant towards improving crop productivity and quality.	Alginmate Product Pvt. Ltd,	Dr. Arup Ghosh	11,80,000/-
8.	TSP- 1417	Marine environmental monitoring for prevailing condition and site selection for marine outfall of Ahmedabad CETP.	Mega Clean Association (AMCA),	Dr. Soumya Haldar	11,80,000/-
9.	TSP- 1415	fisheries in seaweed cultivation and by product	Directorate of Fisheries, Govt. of Tamil Nadu, Chennai	Dr. K. Eswaran (Retired) Dr. Pratap Bapat (Officiating)	1,21,51,573/-

		Ramanathapuram district.			
10.	TSP- 1407	Fabrication, installation, testing and commissioning of 6 RO based desalination plants (5 of 1500 LPH and 1 of 1000 LPH capacity in different villages of Ramanathapuram District, Tamil Nadu	Center Trust - New Delhi	Dr. Puyam Singh	2,454,990/-
Col	laborativ	e Projects			
1.	CLP- 1210	Development, fabrication, installation and optimization of electrodialysis reversal units for producing desalinated water (TDS: ~500 ppm) with 1.0 m³/h flow rate using feed water (TDS: 2000-3000) with ~70-75% water recovery.	NTPC Limited - Noida	Dr. V. K. Shahi	12,15,400/-
2.	CLP- 1209	Feasibility study for high water recovery (approx. 90-95%) and salt recovery (approx. 95%) by designing, development, fabrication and testing of 1.0 m ³ /h hybrid RO plant (01 Nos.) using feed water TDS: 2000-3500 ppm.	Tata Steel Limited - Mumbai	Dr. V. K. Shahi	Nil (The fund will be release in this project after project completion.)
3.	CLP- 1208	Proof of concept and feasibility studies on the development of alginic acid and its derivative		Dr. Kamlesh Prasad	15,13,987/-
4.	CLP- 1207	Produced water treatment from outlet of ETP, ONGC, Mehsana: Optimization of pretreatment protocol and membrance fouling	ONGC Energy Center Trust - New Delhi	Dr. Suresh Jewrajka	14,47,250/-

17. बजट सारांश [Budget Summary]

CSIR Allocation	(₹ in Lakhs)
A. Revenue (National Labs.)	
Total Salaries	2747.160
Budget (Including P04/P05/P06/P-70-Staff Qtr.)	269.540
P-07 Chemicals/Consumable & Other Research	290.630
(A) Total Revenue Budget	3307.33
B. Capital (National Labs.)	
Budget (Including W & S/ Staff Qtrs. Capital)	100.000
P-50 Land Cost	0.000
P-50 (App. & Equipment/Computer Equipment/Office Equipment)	531.500
P-50 (Furniture & Fittings/ Workshop Machinery)	5.000
P-50 (Library Books/Library Journals)	220.679
P-50 Vehicles	0.000
P-26 (ICT) (Infrastructure/ Facilities)	0.000
(B) Total Capital	857.179
Total Rev. + Cap. (A+B)	4164.509
C. Total Networking & RSP Projects	145.868
Total National Lab. (A+B+C)	4310.377
P-61 NMITLI	0.000
Revenue other than CSIR Allocation	0.000
Sponsored R &D	0.000
Collaborative/Cooperative R &D	26.769
Grant-in-Aid R &D	442.505
R &D Consultancy	8.210
SMM/TSP	130.472
SUB TOTAL (ECF)	607.956
Analytical/Tech Services	19.696
Knowhow Transfer/ Royalty	50.144
Sale of Lab Products	0.000
Conference/Seminar/Workshop	0.000
SUB TOTAL (Credited to CSIR/ Lab Reserve)	69.840
Amount collected as service tax (Repaid to Government)	38.330
GRAND TOTAL	716.126
Chaning Coch Polones	1016 007
Opening Cash Balance Receipt during the year	1816.087 653.239
Investment encashment on maturity	1500.000
Total Receipt (A)	3969.326
Expenditure during the year	338.136
Reinvestment	1600.000
Total Expenditure (B)	1938.136
*Closing Cash Balance (A-B)	2031.190

18. अनुसंधान परिषद [Research Council]

01	April 2020 to 31 August 2020	
SN	Name and Affiliation	
1.	Prof. Jayesh Bellare, IIT, Mumbai	Chairperson
2.	Dr. R. V. Jasra, Reliance Industries Ltd., Vadodara	Member
3.	Dr. Parthasarathi Dastidar, IACS, Kolkata	Member
4.	Mr. P. N. Rao, GHCL Ltd., Ahmedabad	Member
5.	Dr. Anil Kumar Kruthiventi, TCIC, Pune	Member
6.	Dr. Anil Kumar, CSIR-NCL, Pune	Member
7.	Dr. Rajeev Kandpal, Salt Commissioner, Jaipur	Member
8.	Dr. Vipin C Kalia, CSIR-IGIB, Delhi	Member
9.	Prof. Alok Bhattacharya, JNU, Delhi	Member
10.	·	Member
	Dr. Anjan Ray, CSIR-IIP, Dehradun	DG's Nominee
12.		Sister Laboratory
13.		Director
14.		Secretary, RC
	Dr Kannan Srinivasan, CSIR-CSMCRI, Bhavnagar	Secretary, RC
	September 2020 to 31 March 2021	
SN	Name and Affiliation	
1.	Prof. Swaminathan Sivaram, Honorary Professor and INSA Senior Scientist IISER, Pune	Chairperson
2.	Prof. Ramaswamy Murugavel, Professor of Chemistry, IIT Bombay.	Member
3.	Prof. Dinabandhu Sahoo, Professor of Botany, University of Delhi.	Member
4.	Dr. Ramesh V. Sonti, Director, National Institute of Plant Genome Research, New Delhi.	Member
5.	Shri Ravi Mariwala, Founder & Chief Executive Officer Scientific Precision Pvt. Ltd., Mumbai.	Member
6.	Shri Narasimha Sastry Sridhara. Unit Head, Grasim Industries Chemical Division, Renukoot.	Member
7.	Ms. V. Radha, Joint Secretary, Department of Promotion of Industry & Internal Trade, Udyog Bhawan, New Delhi	Agency Representative
8.	Prof. T. P. Radhakrishnan, Professor of Chemistry, University of Hyderabad	DG's Nominee
9.	Dr. Sadhana Rayulu, Chief Scientist, CSIR-NEERI, Nagpur	Sister Laboratory
10.	Dr. Kannan Srinivasan, CSIR-CSMCRI	Director
11.	Shri K. Venkatasubramanian, Head, Central Planning Directorate, CSIR, New Delhi	CSIR Hqrs. Invitee
12.	Dr. Biswajit Ganguly, CSIR-CSMCRI	Secretary, RC

19. प्रबंधन परिषद [Management Council]

SN	Name and Affiliation	
1.	Dr. Kannan Srinivasan Director,	Chairperson
2.	Dr. B Ganguly, Senior Principal Scientist	Member
3.	Dr. Avinash Mishra, Principal Scientist	Member
4.	Dr. Ankush Biradar, Senior Scientist	Member
5.	Dr. (Ms.) Bhoomi Andharia, Scientist, CSIR-CSMCRI	Member
6.	Dr. A. B. Boricha, Principal Technical Officer	Member
7.	Dr. Sunil Kumar Singh, Director, CSIR-National Institute of Oceanography, Goa.	Member
8.	Dr. Ankkur Goel, Senior Principal Scientist & Head, BDIM	Member
9.	Controller of Finance & Accounts/ Finance & Accounts Officer	Member
10.	Controller of Administration/ Administrative Officer	Member - Secretary

20. वैधानिक समितियाँ [Statutory Committees] एससी / एसटी के लिए शिकायत निवारण समिति [Grievance Redressal Committee for SCs/STs]

SN	Name and Designation	
Fron	01-04-2020	
1.	Liaison Officer for SCs/STs	Ex officio Chairperson
2.	Dr. R. B. Thorat, Principal Scientist	Member
3.	Dr. V. P. Boricha, Senior Technical Officer (2)	Member
4.	Mr. B. A. Sharma, Senior Technician (2)	Member
5.	Mrs. Sarla M. Solanki, Technician (2)	Member
6.	COA/AO	Member-Secretary
Fron	1 26-09-2020	
1.	Liaison Officer for SCs/STs	Ex-Officio Chairman
2.	Dr. Santlal J. Jaiswar, Senior Technical Officer (1)	Member
3.	Mr. Raymond Soreng, Technical Assistant	Member
4.	Mr. M. M. Rathod, Sr. Technician (2)	Member
5.	Mrs. Sarla M. Solanki, Technician (2)	Member
6.	COA/AO	Member-Secretary

स्थानीय शिकायत समिति [Local Grievance Committee]

4				
SN	Name and Designation			
From	01-04-2020			
1.	Dr. (Mrs.) Paramita Ray, Senior Principal Scientist		Chairperson	
2.	Dr. Divesh N. Srivastava, Principal Scientist	Member		
3.	Mr. R. J. Sanghavi, Senior Technical Officer (2)		Member	
4.	Mr. Bharat B. Parmar, Senior Technician (2)		Member	
5.	Mr. T. Rambabu, Section Officer (G)		Member	
6.	Dr. (Mrs.) Beena Tyagi, Principal Scientist		Member	
7.	Dr. R. J. Tayade, Senior Technical Officer (2)		Member	
8.	Mr. Brindesh B. Modi, Technician (2)		Member	
9.	Mr. K. N. Rana, Junior Security Guard		Member	
10.	Mr. Satish Chandra, Stores & Purchase Officer		Member	
11.	Administrative Officer Me		ember-Secretary	
12.	Liaison Officer [SC/ST] Ex-		Officio Member	
13.	3. Liaison Officer [OBC] Ex-		Officio Member	
From	23-10-2020			
1.	Dr. J.R. Chunawala, Senior Principal Scientist & Liaison Offi [SC/ST]	icer	Chairman	
2.	Dr. (Mrs.) Saroj Sharma, Senior Scientist		Member	
3.	Dr. (Mrs.) Mina R Rathod, Principal Technical Officer		Member	
4.	Mr. P. J. Dodia, Senior Technician (2)		Member	
5.	Mr. Vishal Gohel, Senior Stenographer		Member	
6.	Dr. (Ms.) Bhoomi R Andharia, Senior Scientist		Member	
7.	Mr. K. G. Vijay Anand, Senior Technical Officer (1)		Member	
8.	Mr. Harpalsinh D. Rathod, Technician (1)		Member	
9.	Mr. M. N. Parmar, Lab Assistant		Member	
10.	Mr. Sanjay D. Chauhan, Assistant Section Officer (G)		Member	
11.	Administrative Officer		Member-Secretar	

आंतरिक शिकायत समिति

[Internal Complaints Committee]

SN	Name and Designation		Remarks
Princip	Dr. (Mrs.) Beena Tyagi Principal Scientist	Dussiding Officer	Up to 30 June 2020
1.	Ms. H. H. Deraiya Senior Principal Scientist	Presiding Officer	From 01 July 2020
2.	Mrs. Umaben Trivedi, Secretary, RD Gardi Stree Kelavani Mandal & Trustee, Bhavnagar Grahak	Member	

	Suraksha Mandal		
3.	Dr. J. R. Chunawala Senior Principal Scientist	Member	
4.	Ms. H. H. Deraiya Principal Scientist Member		
5.	Dr. Arvind Kumar Principal Scientist	Member	
6.	Dr. (Mrs.) Saroj Sharma, Scientist	Member	
7.	Dr. (Mrs.) Anjani K Bhatt Sr. Technical Officer (3)	Member	
8.	AO/ SO (Vigilance)		
From	30-12-2020		
SN	Name and Designation		
1.	Dr. (Mrs) Subarna Maiti, Principal S	Scientist	Presiding Officer
2.	Dr. D. R. Chaudhary, Principal Scie	ntist	Member
3.	Dr. (Mrs.) Saroj Sharma, Senior Scientification	entist	Member
4.	Dr. (Ms.) Bhoomi Andharia, Senior	Scientist	Member
5.	Dr. Shibaji Ghosh, Senior Scientist		Member
6.	Dr. (Mrs.) Mina R. Rathod, Principa	l Technical Officer	Member
7.	Ms. Diptiben I. Desai, Advisor & Principal Golden Tomorrow High School, Janaben Meghjibhai Dafda Education Trust, Chitrakut Nagar, Opp. Manglam Hall, Bharat Nagar, Bhavnagar		Member
8.	Administrative Officer		Convener (Ex-Officio)

राजभाषा कार्यान्वयन समिति

[Official Language Implementation Committee]

SN	Name and Designation	
1.	Dr. Kannan Srinivasan, Director	Chairperson
2.	Dr. Kanti Bhushan Pandey, Scientist	Coordinator & Rajbhasha Adhikari
3.	Dr. Vinod Kumar Shahi, Senior Principal Scientist	Member
4.	Dr. Divesh N. Srivastava, Senior Principal Scientist	Member
5.	Dr. (Mrs.) Shilpi Kushwaha, Scientist	Member
6.	Mr. Sandip Vaniya, Scientist	Member
7.	Administrative Officer	Member
8.	Store and Purchase Officer	Member
9.	Finance and Accounts Officer	Member
10.	Mr. T. Rambabu, SO	Member

21. आरक्षण नीति कार्यान्वयन [Reservation policy implementation]

As on 01 January 2020				
Category/ Level of Posts	Total No. of filled up posts	Number of SC's (Percentage)	Number of ST's (Percentage)	Number of OBC's (Percentage)
Scientists Gr IV (Pay band 3 & 4)	88	08 (9.09%)	05 (5.68%)	13 (14.77%)
Technical Gr III (Pay band 2, 3 & 4)	28	07 (25.00%)	03 (10.71%)	05 (17.85%)
Technical Gr II (Pay band 1 & 2)	50	07 (14.00%)	05 (10.00%)	09 (18.00%)
Technical Gr I (Pay band 1)	09	03 (33.33%)	00 (0.00%)	(0.00%)
Administration				
Group-A (Pay band 3 & 4)	03	00 (0.00%)	(0.00%)	(0.00%)
Group-B (Pay band 2)	16	(0.00%)	03 (18.75%)	02 (12.50%)
Group-C (Pay band 1)	19	02 (10.52%)	01 (5.26%)	05 (26.31%)
Safaiwala (Pay band 1)	03	03 (100.00%)	00 (0.00%)	00 (0.00%)

As on 01 January 2021				
Category/ Level of Posts	Total No. of filled up posts	Number of SC's (Percentage)	Number of ST's (Percentage)	Number of OBC's (Percentage)
Scientists Gr IV	87	08	05	12
(Pay band 3 & 4)		(9.19%)	(5.74%)	(13.79%)
Technical Gr III (Pay band 2, 3 & 4)	27	07 (25.92%)	03 (11.11%)	05 (18.51%)
Technical Gr II	48	06	05	09
(Pay band 1 & 2)		(12.50%)	(10.41%)	(18.75%)
Technical Gr I	07	02	00	00
(Pay band 1)		(28.57%)	(0.00%)	(0.00%)
Administration				
Group-A	04	00	00	00
(Pay band 3 & 4)		(0.00%)	(0.00%)	(0.00%)
Group-B	15	00	03	02
(Pay band 2)		(0.00%)	(20.00%)	(13.33%)
Group-C	19	02	01	05
(Pay band 1)		(10.52%)	(5.26%)	(26.31%)

Safaiwala	0.2	03	00	00
(Pay band 1)	03	(100%)	(0.00%)	(0.00%)

22. आरटीआई अनुपालन [RTI Compliance]

Period	Opening Balance	Receipts Under 6(3)	Received in the quarter	Disposal	Closing Balance
April – June	07	05	02	08	04
July - September	04	25	04	27	06
October – December	06	12	06	15	08
January - March	08	09	04	18	02

23. ज्ञान संसाधन [Knowledge Resources]

एलिस फॉर विंडोज (एएफडब्ल्यू) – जो की एक The library has been automated using Alice अंतरराष्ट्रीय उपयोगकर्ता के अनुकूल पुस्तकालय पैकेज for Windows (AfW) – an international user-है, के उपयोग के द्वारा पुस्तकालय को स्वचालित किया friendly library package. The software गया है। सॉफ्टवेयर पुस्तकालय में पुस्तकों की ग्रंथ सूची, स्थान और उपलब्धता की जानकारी तक त्वरित पहुंच की स्विधा प्रदान करता है। पुरतकालय का अपना वेबपेज है। यह सुविधा सीएसएमसीआरआई परिसर के भीतर इंट्रानेट INTRANET within CSMCRI Campus to benefit पर भी उपलब्ध है ताकि वैज्ञानिकों/ शोध छात्रों को उनके the scientists/research scholars to being संबंधित क्षेत्रों से जोड़ा जा सके।

facilitates speedy access to bibliographic, location and availability information of the books in the library. The library has its own webpage. This facility is also available on linked to their respective fields.

संसाधन (Resource)

केआरसी में प्रिंट के साथ-साथ ई-स्वरूप में भी काफी There are plenty of materials in the KRC in सामग्री है। पुस्तकालय के एक समृद्ध संग्रह में पत्रिकाएं, विश्वकोश, रिपोर्ट, पेटेंट, मानक, सम्मेलन की कार्यवाही, प्रशिक्षण नियमावली, मानचित्र/चार्ट, सीडी/डीवीडी आदि शामिल हैं। केआरसी में 31.3.2021 तक प्रिंट संसाधनों की उपलब्धता निम्न प्रकार हैं:

the print as well as E- form. A rich collection of library includes journals, encyclopedias, reports, patents, standards, conference proceedings, training manuals, maps/charts, CDs/DVDs, etc. The holdings of the print resources in the KRC as on 31.3.2021 are:

SN	Particulars	Available as on 01 April 2020	Addition	Total Collection as on 31 March 2021
1.	Books (English)	12384	21	12405
	Books (Hindi)	747	46	793
2.	Back Vols.	27446		27446
3.	Translation	427	-	427
4.	Photocopy	2149	-	2149
5.	Patents	340	-	340
6.	Standards	761	-	761
7.	Micro-cards	67	-	67

	Total	48,610	67	48,677
10	Reprints	2698	-	2698
9.	Maps/Charts	265	-	265
8.	Microfilms	1326		1326

डेटाबेस (Databases)

रहे हैं। केआरसी ने कई डेटाबेस हासिल कर लिए हैं। उनके अलावा, केआरसी के पास राष्ट्रीय ज्ञान संसाधन सह-व्यवस्था के माध्यम से कई डेटाबेस तक पहुंच है। डेटाबेस की सूची में शामिल हैं:

डेटाबेस और अन्य डिजिटल सामग्री पुस्तकालय की संदर्भ Databases and other digital materials are सेवाओं और अनुसंधान में तेजी से महत्वपूर्ण भूमिका निभा playing an increasingly important role in the library's reference services and research. The KRC has acquired several databases. Besides them, KRC is also having access to several databases through National Knowledge Resource Consortium. The list of databases includes:

S. N.	Title of the Database		
1.	Derwent Innovation		
2.	Web of Science		
3.	ASTM		
4.	Sci-Finder Sci-Finder		
5.	Cambridge Structural Database		
6.	ACS Journals		
7.	ICDD (Intl. Center for Diffraction Data)		
8.	Nature Online		
9.	ProQuest Thesis & Sci. Tech EBooks		
10.	Science Online		
11.	Chem Draw		

मुद्रित और ई-जर्नल (Printed and E-Journals)

केआरसी के पास 57 अंतर्राष्ट्रीय और 12 राष्ट्रीय KRC is subscribing 57 International and 12 पत्रिकाओं की सदस्यता है। केआरसी राष्ट्रीय ज्ञान National Journals. The KRC is a member of संसाधन सह-व्यवस्था का सदस्य है, जो एल्सेवियर, एसीएस, आरएससी, आईईईई, स्प्रिंगर, नेचर, टी एंड एफ, ओयूपी और विले जैसे प्रमुख प्रकाशकों से 4500 से अधिक ई-पत्रिकाओं तक पहुंच प्रदान कर रहा है। इसके अलावा, एनकेआरसी कंसोर्टियम के माध्यम से व्यापक several databases covering wide disciplines विषयों को कवर करने वाले कई डेटाबेस।

National Knowledge Resource Consortium, which is providing access to more than 4500 e-journals from major publishers such as Elsevier, ACS, RSC, IEEE, Springer, Nature, T&F, OUP and Wiley. Also, through NKRC Consortium.

दस्तावेज़ वितरण सेवाएँ (Document Delivery Services)

पुस्तकालय अन्य पुस्तकालयों, जैसे सीएसआईआर The library also provides Document Delivery पुस्तकालय, डीएसटी लेब, डीआरडीओ, आईआईटी Services (DDS) to other libraries, such as आईआईएसईआर और अन्य विश्वविद्यालयों को दस्तावेज CSIR Libraries, DST Labs, DRDO, IITs IISERs वितरण सेवाएं (डीडीएस) भी प्रदान करता है।

and other universities.

कार्यक्रम/ प्रदर्शन (Events/ Demonstration)

सीएसआईआर-सीएसएमसीआरआई ने अपने CSIR-CSMCRI organized below-mentioned उपयोगकर्ताओं के लाभ के लिए वर्ष के दौरान नीचे दिए गए sessions during the year for the benefit of its सत्रों का आयोजन किया।

Session	Date	
End Note Reference Manager Tool	24 September 2020	
Web of Science	24 September 2020	

24. राजभाषा प्रसार [Official Language Dissemination]

सीएसआईआर-सीएसएमसीआरआई में संवैधानिक राजभाषा नीति के अनुपालन के साथ-साथ वैज्ञानिक एवं तकनीकी गतिविधियों को हिन्दी में प्रकाशन तथा मीडिया द्वारा आमजनता तक पहुँचाने का प्रयास किया जाता है। संस्थान का हिन्दी विभाग सरकारी कार्यों में हिन्दी भाषा का सरल एवं सहज उपयोग के साथ उसकी आमजनता के संपर्क भाषा के रूप में सुद्दढ़ प्रस्तुति के प्रयास में कार्यरत है। वर्ष 2020-2021 के दौरान हिन्दी विभाग द्वारा निम्नलिखित कार्य संपन्न किए गए।

हिन्दी प्रशिक्षण

- 31 मार्च, 2020 तक का कर्मचारियों के हिन्दी ज्ञान संबंधी रोस्टर अद्यतन किया गया।
- गृहमंत्रालय के आदेशानुसार प्रवीणता प्राप्त कर्मचारियों/अधिकारियों को हिन्दी में कार्य करने हेतु व्यक्तिशः आदेश जारी किये गये।
- संस्थान में नवनियुक्त में नियुक्त वैज्ञानिकों को राजभाषा हिन्दी संबंधी नियमों/ अधिनियमों/ संवैधानिक व्यवस्थाओं आदि के बारे में जानकारी एवं मार्गदर्शन देने हेतु दिनांक 16/06/2020 को एमएस टीम (MS Team) द्वारा एक हिन्दी ऑनलाइन प्रशिक्षण कार्यक्रम का आयोजन किया गया।

राजभाषा प्रचार-प्रसार

- हिन्दी कार्यान्वयन के बारे में गृहमंत्रालय, राजभाषा विभाग, भारत सरकार द्वारा वर्ष 2020-2021 के लिये वार्षिक कार्यक्रम सभी विभागाध्यक्षों/सर्वप्रयोगकर्ता तथा राजभाषा कार्यान्वयन समिति के सदस्यों को प्रेषित किया गया और तत्संबंधी अनुपालन हेतु सूचित किया गया।
- हिन्दी दिवस के अवसर पर दिनांक 07/09/2020 से 14/09/2020 के दौरान हिन्दी सप्ताह कोविड-19 महामारी के चलते ऑनलाइन मनाया गया। हिन्दी सप्ताह के दौरान विभिन्न प्रतियोगिताओं जैसे तत्काल दिये गए विषय पर निबंध प्रतियोगिता, तस्वीर क्या बोलती है? का आयोजन किया गया। प्रतिदिन इन्ट्रानेट द्वारा ऑनलाइन प्रश्नोत्तरी का भी आयोजन किया गया, जिसमें कर्मचारियों ने उत्साहपूर्वक भाग लिया।
- दिनांक 14 सितंबर, 2020 को हिन्दी सप्ताह समापन एवं हिन्दी दिवस समारोह का आयोजन किया गया जिसमे

मुख्य अतिथि के रूप में प्रो. अनुराग अग्रवाल, निदेशक, सीएसआईआर-जीनोमिक और समवेत जीव विज्ञान संस्थान, नई दिल्ली को आमंत्रित किया गया था। इस समारोह में हिन्दी सप्ताह के दौरान आयोजित प्रतियोगिताओं के विजेताओं को पुरस्कृत किया गया।

 डॉ.कान्ति भूषण पाण्डेय, विरष्ठ वैज्ञानिक द्वारा विमान पत्तन प्राधिकरण,भावनगर में हिन्दी के व्यापक अनुप्रयोग विषयों पर आमंत्रित व्याख्यान व मार्गदर्शन दिये गये।

हिन्दी कार्यशाला

- हिन्दी विभाग द्वारा संस्थान के कर्मचारियों/ अधिकारियों को हिन्दी में कार्य करने के लिए प्रोत्साहित करने हेतु समय-समय पर कार्यशालाओं का आयोजन किया गया।
- दिनांक 24/08/2020 को संस्थान के योजना प्रकोष्ठ में टेबल वर्कशॉप का आयोजन किया गया और कार्मिकों को हिन्दी भाषा, वर्तनी संबंधी मार्गदर्शन भी दिया गया।
- दिनांक 09/12/2020 को संस्थान के पुस्तकालय
 में टेबल वर्कशॉप का आयोजन किया गया।
- संस्थान के कार्यों में राजभाषा हिन्दी को बढ़ावा देने एवं इस क्षेत्र में हुये नवाचारों से अवगत कराने के लिए संस्थान में दिनांक 25/03/2021 को 'राजभाषा हिंदी के प्रशासनिक और वैज्ञानिक क्षेत्र में उपयोगिता' विषय पर एक हिंदी कार्यशाला आयोजित की गई। इस कार्यशाला में आमंत्रित अतिथि डॉ. डीडी ओझा, पूर्व वैज्ञानिक ने राजभाषा नीति पर प्रकाश डालते हुए प्रशासनिक तथा वैज्ञानिक कार्यों में हिंदी भाषा का सरल एवं सहज प्रयोग पर प्रकाश डाला।

तकनीकी एवं प्रशासनिक अनुवाद

- संस्थान के स्थापना दिवस समारोह तथा परिषद स्थापना दिवस समारोह के लिए प्रेस नोट, ई-आमंत्रण, बैनर, नामपट्ट आदि हिन्दी में तैयार करने का कार्य किया गया।
- रबड़ की मोहरें, टेंडर, नोटिस, एम.ओ.यु. फार्म, प्रशासनिक फार्मों, विभिन्न विभागों के संशोधित/परिवर्तित फार्मों का आवश्यकतानुसार अनुवाद तथा टंकण कार्य किया गया।
- संस्थान के वैज्ञानिक विभागों द्वारा समय-समय पर आयोजित कौशल पहल/प्रिशिक्षण कार्यक्रमों, संकेत बोर्ड, पोस्टर, सूचना-बोर्ड, शिलान्यास बोर्ड आदि के द्विभाषिकरण का कार्य किया गया।
- संस्थान की तकनीकी पुस्तिका का हिन्दी अनुवाद एवं द्विभाषा में प्रकाशन।
- संस्थान में प्रयोग में आने वाले वैज्ञानिक नामों का हिन्दी भावानुवाद।

हिन्दी पत्राचार एवं प्रगति रिपोर्ट

- हिन्दी में आये समस्त पत्रों के उत्तर हिन्दी में तथा अन्य भाषाओं के पत्रों के उत्तर हिन्दी में अथवा द्विभाषी में भेजे
 गये।
- प्रत्येक तिमाही में संस्थान के सभी विभागों से जानकारी एकत्रित तथा संकलित करके प्रगति रिपोर्ट तैयार की गई
 और राजभाषा विभाग,पश्चिम क्षेत्र, मुंबई को ऑनलाइन व सीएसआईआर, मुख्यालय को भेजी गई।
- नगर राजभाषा कार्यान्वयन समिति, भावनगर को राजभाषा प्रगति की छमाही रिपोर्ट भेजी गई।
- वर्ष के दौरान आयोजित हिन्दी कार्यशालाओं की रिपोर्ट तथा राजभाषा कार्यान्वयन समिति की बैठकों का कार्यवृत सीएसआईआर की सभी प्रयोगशालाओं एवं नगर राजभाषा कार्यान्वयन समिति, भावनगर के सदस्य संस्थानों को प्रेषित किया गया।

हिन्दी बैठकें एवं निरीक्षण

- वर्ष के दौरान चार तिमाही राजभाषा कार्यान्वयन समिति की बैठकें निदेशक महोदय की अध्यक्षता में राजभाषा कार्यान्वयन समिति के अन्य सदस्यों के साथ संपन्न की गई।
- नगर राजभाषा कार्यान्वयन समिति, भावनगर द्वारा आयोजित अर्धवार्षिक समीक्षा ई-बैठक में संस्थान का प्रतिनिधित्व किया गया एवं संस्थान में राजभाषा कार्यों में हो रही प्रगति व नवाचार के बारे में सूचित किया गया।
- वर्ष 2020-2021 के दौरान संस्थान की राजभाषा कार्यान्वयन समिति द्वारा प्रतिमास संस्थान के एक-एक विभाग का राजभाषा कार्यान्वयन संबंधी आंतरिक निरीक्षण किया गया। जिसके अंतर्गत, विभागों में हिन्दी भाषा में कार्य करने में आ रही समस्याओं के समाधान के साथ राजभाषा के प्रगामी प्रयोगों को बढ़ावा देने हेतु सुझाव भी दिये गये तथा विभाग में आवश्यकतानुसार फार्म, नोटिंग, रजिस्टर शीर्षक आदि संबंधी हिन्दी अनुवाद भी हिन्दी विभाग द्वारा उपलब्ध कराया गया।

प्रोत्साहन

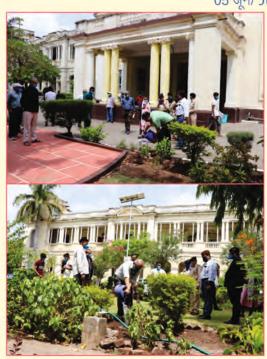
- संस्थान में राजभाषा हिन्दी में अधिकतम कार्यों को बढ़ावा देने के क्रम में प्रतिवर्ष अधिकतम हिन्दी शब्दों का प्रयोग करने वाले संस्थान के कर्मचारियों को पुरस्कार दिये गये। इसके अतिरिक्त कक्षा 1 से 12 तक हिन्दी विषय में सर्वाधिक अंक प्राप्त करनेवाले कर्मचारियों के बच्चों को पुरस्कृत किया गया।
- 2020-2021 में हिन्दी कार्यान्वयन में वृद्धि हेतु विशेष प्रयास करने के लिए विभागाध्यक्ष- मेम्ब्रेन विज्ञान और पृथक्करण प्रौद्योगिकी, विभागाध्यक्ष-व्यापार विकास एवं सूचना प्रबंधन तथा, विभागाध्यक्ष-भंडार व क्रय को सम्मानित किया गया।
- संस्थान के आधिकारिक कार्यों में हिन्दी के प्रयोग को प्रोत्साहन देने के उद्देश्य से निदेशक द्वारा 14 सितंबर, 2020; हिन्दी दिवस के अवसर पर संस्थान में हिन्दी में सर्वश्रेष्ठ कार्य करने वाले संस्थान के हिन्दी भाषी व गैर-हिन्दी भाषी स्थायी कर्मचारियों के लिए दो "राजभाषा कार्यान्वयन में उत्तम कर्मचारी" पुरस्कार की घोषणा। यह पुरस्कार प्रतिवर्ष, 10 अप्रैल को सीएसआईआर- सीएसएमसीआरआई के स्थापना दिवस के अवसर पर दिया जाएगा।
- हिन्दी सप्ताह के दौरान विविध प्रतियोगिताओं व उनके विजेताओं को तत्काल पुरस्कार देकर प्रोत्साहन।

हिन्दी में विज्ञान का प्रचार-प्रसार

- 2020-2021 में हिन्दी में विज्ञान के प्रचार प्रसार हेतु सीएसआईआर-सीएसएमसीआरआई-'वैज्ञानिक नवाचारों और राष्ट्र सेवा में समर्पित अनेकों दशक' नामक द्विभाषी पत्रिका का सम्पादन एवं प्रकाशन किया गया।
- संस्थान में राष्ट्रीय विज्ञान दिवस के पिरपेक्ष्य में दिनांक 23/02/2021 को 'मोबाइल फोन-स्वास्थ्य के खतरे का अलार्म' विषय पर एक लोकप्रिय विज्ञान व्याख्यान का आयोजन किया गया जिसमें मोबाइल के प्रयोग से हो रहे स्वास्थ्य पर विपरीत प्रभावों पर विस्तार से चर्चा की गई। इस कार्यक्रम में डॉ. डी डी ओझा, पूर्व वैज्ञानिक एवं विज्ञान संचारक को बतौर व्याख्यानदाता आमंत्रित किया गया था।

- दिनांक 11-12 जनवरी, 2021 के दौरान इंदिरा गांधी परमाणु अनुसंधान केंद्र एवं सामान्य सेवा संगठन, कल्पाक्कम, तिमलनाडु द्वारा हिन्दी में आयोजित 'आत्मिनर्भर भारत की उड़ान-विज्ञान एवं तकनीकी का योगदान'- अखिल भारतीय हिन्दी वैज्ञानिक वेब संगोष्ठी में व. वैज्ञानिक डॉ.कान्ति भूषण पाण्डेय ने संस्थान का प्रतिनिधित्व किया तथा संस्थान की वैज्ञानिक गतिविधियों, उपलब्धियों के बारे में प्रस्तुति की।
- संस्थान में हो रहे शोध कार्यों एवं विकसित प्रौद्योगिकियों का सामान्य जनमानस में प्रचार प्रसार हेतु अनेकों वैज्ञानिक लेख सरल हिन्दी भाषा में विभिन्न राष्ट्रीय पत्र-पत्रिकाओं जैसे नेशनल रिसर्च डिवेलपमेंट कारपोरेशन (एनआरडीसी) द्वारा प्रकाशित विज्ञान पत्रिका–आविष्कार, सीएसआईआर-निस्केयर द्वारा प्रकाशित विज्ञान पत्रिका-विज्ञान प्रगति; विज्ञान परिषद, प्रयागराज द्वारा प्रकाशित पत्रिका-विज्ञान एवं विज्ञान प्रसार द्वारा प्रकाशित ड्रीम 2047 तथा समाचार पत्रों इत्यादि में प्रकाशन हेतु भेजे गए।

संस्थान को राजभाषा का राष्ट्रीय पुरस्कार


- सीएसआईआर-सीएससएमआरआई,भावनगर को वर्ष 2019-20 के दौरान राजभाषा नीति के श्रेष्ठ कार्यान्वयन के लिए 'राजभाषा कीर्ति पुरस्कारों' की बोर्ड/स्वायत्त निकाय/ट्रस्ट/सोसाइटी की श्रेणी के अंतर्गत 'ख' क्षेत्र में प्रथम पुरस्कार के लिए चुना गया। यह सम्मान, राजभाषा विभाग, गृह मंत्रालय, भारत सरकार द्वारा घोषित किया गया।
- संस्थान को यह पुरस्कार हिन्दी दिवस के अवसर पर दिनांक 14 सितंबर, 2021 को दिया जाएगा।

25. सम्मेलन/ कार्यशालाएं/ कार्यक्रम/ बैठकों का आयोजन [Seminars/ Workshops/ Events/ Meetings Organized]

विश्व पर्यावरण दिवस/ World Environment Day

05 जून/ June 2020

विषमांग उत्प्रेरण पर राष्ट्रीय वेबिनार/ National Webinar on Heterogeneous Catalysis

29 जून/ June 2020

स्वतंत्रता दिवस/ Independence Day

15 अगस्त/ August 2020

हिन्दी दिवस/ Hindi Day

14 सितम्बर/ September 2020

सतर्कता जागरूकता सप्ताह के दौरान व्याख्यान और सत्यनिष्ठा की प्रतिज्ञा Lecture and Integrity Pledge during Vigilance Awareness Week 27 अक्तूबर/ October-02 नवम्बर/ November 2020



गणतंत्र दिवस/ Republic Day

26 जनवरी/ January 2021

सीएसएमसीआरआई स्थापना दिवस/ CSMCRI Foundation Day

10 अप्रैल 2020 (09 फरवरी 2021 को मनाया गया)

10 April 2020 (Celebrated on 09 February 2021)

राष्ट्रीय विज्ञान दिवस/ National Science day

28 फरवरी/ February 2021

राष्ट्रीय सुरक्षा दिवस/ National Safety Day

04 मार्च/ March 2021

अंतर्राष्ट्रीय महिला दिवस/ International Women's Day

08 मार्च/ March 2021

