Dr. Asish Kumar Parida

Dr. Asish Kumar Parida

Principal Scientist

Academic Qualifications

Ph. D. (Plant Science), Utkal University (2004)

Contact Details

Dr. Asish Kumar Parida

Principal Scientist

Phone: 9428787618

asishparida@csmcri.res.in

6250 / 2567760

Google Scholar Link:

https://scholar.google.com/citations?user=pDkJOb0AAAAJ&hl=en

Google Scholar Citation Report of My Publications

Citation indices

All

Since 2017

Citations

8478

4145

h-index

23

21

i10-index

28

27

  1. M Patel, AK Parida* (2022) Salinity mediated cross-tolerance of arsenic toxicity in the halophyte Salvadora persica L. through metabolomic dynamics and regulation of stomatal movement and photosynthesis. Environmental Pollution, 300, 118888 doi: https://doi.org/10.1016/j.envpol.2022.118888 (I.F.: 8.05)
  2. M Patel, D Fatnani, AK Parida* (2021) Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic metabolic regulations. Plant Physiology and Biochemistry, 166: 290-313, doi: https://doi.org/10.1016/j.plaphy.2021.06.003. (I.F.: 4.27)
  3. Panda A, Rangani J, Parida AK* (2021) Physiological and metabolic adjustments in the xerohalophyte Haloxylon salicornicum conferring drought tolerance.          Physiologia Plantarum  172: 1189-1211, doi: https://doi.org/10.1111/ppl.13351. (I.F. 4.5).
  4. Agarwal P, Baraiya BM, Joshi Priyanka S, Patel Monika, Parida AK, Pradeep K Agarwal PK (2021) AlRab7 from Aeluropus lagopoides ameliorates ion toxicity in transgenic tobacco by regulating hormone signalling and ROS homeostasis. Physiologia Plantarum  172: 1189-1211, doi:  https://doi.org/10.1111/ppl.13449. (I.F. 4.5).
  5. Panda A, Rangani J, Parida AK* (2021)   Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. Plant Physiogy and Biochemistry  158: 284-296 DOI: https://doi.org/10.1016/j.plaphy.2020.11.012.  (I.F. 4.27).
  6. Patel M, Parida AK* (2020) Salinity alleviates the arsenic toxicity in the facultative halophyte Salvadora persica L. by the modulations of physiological, biochemical, and ROS scavenging attributes. Journal of Hazardous Materials, 401, 123368, doi: https://doi.org/10.1016/j.jhazmat.2020.123368.
  7. Panda A, Rangani J, Parida AK* (2020) Parida AK* (2020)      Comprehensive proteomic analysis revealing multifaceted regulatory network of the xero-halophyte Haloxylon salicornicum involved in salt tolerance. Journal of Biotechnology 324:43-16, doi:https://doi.org/10.1016/j.jbiotec.2020.10.011. (I.F.: 3.503)         
  8. Rangani J, Panda A, Parida AK* (2020) Metabolomic study reveals key metabolic adjustments in the xerohalophyte Salvadora persica L. during adaptation to water deficit and subsequent recovery conditions. Plant Physiology & Biochemistry, 150:180-195. doi: https://doi.org/10.1016/j.plaphy.2020.02.036. (I.F.: 4.270)
  9. Patel M, Rangani J, Kumari A, Parida AK*           (2020) Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/or phosphorus starvation.  Journal of Biotechnology 323: 136-158    doi: https://doi.org/10.1016/j.jbiotec.2020.08.008 (I.F.: 3.503).
  10. Khedia J, Dangariya M, Nakum AK, Agarwal P, Panda A, Parida AK, Gangapur DR, Meena R, Agarwal PK (2020)     Sargassum seaweed extract enhances Macrophomina phaseolina resistance in tomato by regulating phytohormones and antioxidative activity.                   Journal of Applied Phycology32: 4373–4384. https://doi.org/10.1007/s10811-020-02263-5. (I.F.: 3.215).
  11. Panda A, Rangani J, Parida AK* (2019) Cross talk between ROS homeostasis and antioxidative machinery contributes to salt tolerance of the xero-halophyte Haloxylon salicornicum. Environmental and Experimental Botany, 166: 103799, https://doi.org/10.1016/j.envexpbot.2019.103799. (I.F. 5.545).
  12. Rangani J, Patel M, Kumari A, Brahmbhatt H, Parida AK* (2019) Phytochemical profiling, polyphenol composition, and antioxidant activity in leaf extract of medicinal halophyte Thespesia populnea. Journal of Food Biochemistry, doi:  10.1111/jfbc.12731. (I.F.: 1.662)
  13. Kumari A, Parida AK* (2018) Metabolomics and network analysis reveal the potential metabolites and biological pathways involved in salinity tolerance of the halophyte Salvadora persica. Environmental and Experimental Botany, 148: 85-99, doi: https://doi.org/10.1016/j.envexpbot.2017.12.021. (I.F. 5.545).
  14. Rangani J, Panda A, Patel M, Parida AK* (2018) Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L. Journal of Photochemistry and Photobiology B: Biology, 189: 214-233, doi: https://doi.org/10.1016/j.jphotobiol.2018.10.021. (I.F. 6.252).
  15. Rangani J, Patel M, Kumari A, Brahmbhatt H, Parida AK* (2019) Phytochemical profiling, polyphenol composition, and antioxidant activity in leaf extract of medicinal halophyte Thespesia populnea. Journal of Food Biochemistry, doi:10.1111/jfbc.12731 (I.F. 1.552).
  16. Parida AK*, Kumari A, Panda A, Rangani J and Agarwal P (2018) Photosynthetic pigments, betalains, proteins, sugars, and minerals during Salicornia brachiata senescence. Biologia Plantarum, 62: 343-352, doi: 10.1007/s10535-017-0764-1(I.F. 1.56).
  17. Panda A, Rangani J, Kumari A and Parida AK* (2017) Efficient regulation of arsenic translocation to shoot tissue and modulation of phytochelatin levels and antioxidative defense system confers salinity and arsenic tolerance in the halophyte Suaeda maritima. Environmental and Experimental Botany 143: 149-171. (I.F. 4.369).
  18. Kumari A, Parida AK*, Rangani J and Panda A (2017) Antioxidant activities, metabolic profiling, proximate analysis, mineral nutrient composition of Salvadora persica fruit unravel a potential functional food and a natural source of pharmaceuticals. Frontiers in Pharmacology, 8:61. doi: 10.3389/fphar.2017.00061 (I.F. 4.418).
  19. Kumari A, Parida AK*(2016) Metabolite profiling of the leaf extract reveals the antioxidant and nutraceuticals potential of the halophyte Salvadora persica. RSC Advances, 6: 51629–51641 (I. F. 3.289).
  20. Rangani J, Parida AK*, Panda A, Kumari A (2016) Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme halophyte Salvadora persica L. Frontiers in Plant Science 7:50, doi: 10.3389/fpls.2016.00050 (I. F. 4.495).
  21. Parida AK*, Veerabathini SK, Kumari A, Agarwal PK (2016) Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Frontiers in Plant Science 7:351, doi: 10.3389/fpls.2016.00351 (I. F. 4.495).
  22. Kumari A, Das P, Parida AK*, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6:537, doi:10.3389/fpls.2015.00537 (I. F. 4.495).
  23. Parida AK*, Jha B (2013) Physiological and biochemical responses reveal the drought tolerance efficacy of the halophyte Salicornia brachiata. Journal of Plant Growth Regulation 32: 342-352. (I. F. 2.058)
  24. Parida AK*, Jha B (2013) Inductive responses of some organic metabolites for osmotic homeostasis in peanut (Arachis hypogaea L.) seedlings during salt stress. Acta Physiologiae Plantarum 35:2821-2832. (1.524)
  25. Parida AK*, Jha B (2010) Antioxidative defense potential to salinity in the euhalophyte Salicornia brachiata. Journal of Plant Growth Regulation 29:137-147.
  26. Parida AK*, Jha B (2010) Salt tolerance mechanisms in mangroves: A review. Trees-Structure and Function: 24:199-217. (I. F. 2.058)
  27. Parida AK*, Dasgaonkar VS, Phalak M. S., Aurangabadkar L. P. (2008) Differential responses of the enzymes involved in proline biosynthesis and degradation in cotton genotypes during drought stress and recovery. Acta Physiologiae Plantarum 30:619-624. (I. F. 1.524)
  28. Parida AK*, Dasgaonkar VS, Phalak MS, Umalkar GV, Aurangabadkar LP (2007) Alterations in photosynthetic pigments, protein, and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports 1: 37-48. (I. F. 1.590)
  29. Parida AK, Mittra B, Das AB, Das TK, Mohanty P, (2005) High salinity reduces the content of a highly abundant 23 kDa protein of the mangrove Bruguiera parviflora. Planta 221:135-140. (I. F. 3.376)
  30. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60: 324-349. (I. F. 2.482)
  31. Parida AK, Das AB, Sanada Y, Mohanty P (2005) Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany 80: 77-85. (I. F. 1.471)
  32. Parida AK, Das AB (2004) Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora under hydroponic culture. Journal of Plant Physiology 161: 921-928. (I. F. 2.770)
  33. Parida AK, Das AB, Mittra B, Mohanty P (2004) Salt stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Z. Naturforsch. 59c: 408-414. (I. F. 0.604)
  34. Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology 161: 531-542. (I. F. 2.770)
  35. Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove Bruguiera parviflora. Trees Structure and Function 18: 167-174. (I. F. 1.869)
  36. Parida AK, Das AB, Mittra B (2003) Effects of NaCl stress on the structure, pigment complex composition and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica 41: 191-200. (I. F. 1.007)
  37. Das AB, Parida A, Basak UC and Das P (2002) Studies on pigments, proteins and photosynthetic rates in some mangroves and mangrove associates from Bhirarkanika, Orissa. Marine Biology 141: 415-422. (I. F. 2.393)
  38. Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology 45: 28-36. (I. F. 1.284).


  1. M Patel, AK Parida* (2021) Role of hydrogen sulfide in alleviating oxidative stress in plants through induction of antioxidative defense mechanism, and modulations of physiological and biochemical components. In: Hydrogen Sulfide in Plant Biology, pp 55-85. Elsevier, London, UK, pp 55-85. doi: https://doi.org/10.1016/B978-0-323-85862-5.00006-3.
  2. Patel M, Kumari A, Parida AK* (2020) Arsenic Tolerance Mechanisms in Plants and Potential Role of Arsenic Hyperaccumulating Plants for Phytoremediation of Arsenic-Contaminated Soil. In: Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II (Ed. Hasanuzzaman M), Springer, Singapore, pp 137-162. doi: 10.1007/978-981-15-2172-0_7.
  3. Parida AK*, Kumari A, Rangani J (2019) Halophytes: Potential Resources of Coastal Ecossystems and their Economic, Ecological and Bioprospecting Significance. In: Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses (Eds. Hasanuzzaman M, Shabala S, Fujita M), CAB International, UK, pp 287-323.
  4. Panda A, Parida AK* (2019) Development of Salt Tolerance in Crops Employing Halotolerant Plant Growth–Promoting Rhizobacteria Associated with Halophytic Rhizosphere Soils. In: Saline Soil-based Agriculture by Halotolerant Microorganisms (Eds. Kumar M, Etesami H, Kumar V), Springer, Singapore, pp 75-101.
  5. Panda A, Parida AK*, Rangani J (2018) Advancement of Metabolomics Techniques and Their Applications in Plant Science: Current Scenario and Future Prospective. In: Plant Metabolites and Regulation Under Environmental Stress (Eds. Ahmad P, Ahanger M, Singh V, Tripathi DK, Alam P) Alam) Elsevier, London, UK, pp 1-36.
  6. Parida AK*, Panda A, Rangani J (2018) Metabolomics-Guided Elucidation of Abiotic Stress Tolerance Mechanisms in Plants. In: Plant Metabolites and Regulation Under Environmental Stress (Eds. Ahmad P, Ahanger M, Singh V, Tripathi DK, Alam P) Alam) Elsevier, London, UK, pp 89-132.
  7. Parida AK*, Kumari A, Rangani J and Patel Monika (2018) Eco-Physiological Adaptations of Halophytes for Sustaining Under High Saline Environment: Implications from Ion Homeostasis, Photosynthesis and Photosystem II Efficiency. In: Environment and Photosynthesis: A Future Prospect (Eds. Singh VP, Singh S, Singh R, Pradas SM, New Delhi, India), Studium Press, pp 210-240.
  8. Parida AK*, Tiwari V, Jha B (2014) Impacts of Climate Change on Asian Mangrove Forests. In: F. H. Ibrahim et al. (eds.), Mangrove Ecosystems of Asia, DOI 10.1007/978-1-4614-8582-7_11, © Springer Science+Business Media NewYork 2013.

• Ionomics, proteomics, and metabolomics studies in some important halophytic plants for elucidation of their salinity and drought tolerance mechanisms. • Antioxidative defense system of plants under abiotic stress conditions. • Exploration of important halophytic plants for their nutraceutical potential. • Salinity, drought, and heavy metal tolerance mechanisms of halophytes and crop plants through physiological, metabolomics, and proteomic approaches.

Plant Metabolomics & Ionomics, Proteomics, Abiotic Stress Tolerance mechanisms in plants, Ecophysiology of Halophytes, Antioxidative defense potential of plants under salinity, Drought, and Heavy metals stress, Exploring halophytes for nutraceutical potential.